

Basic Demand Projection

13th April 2021

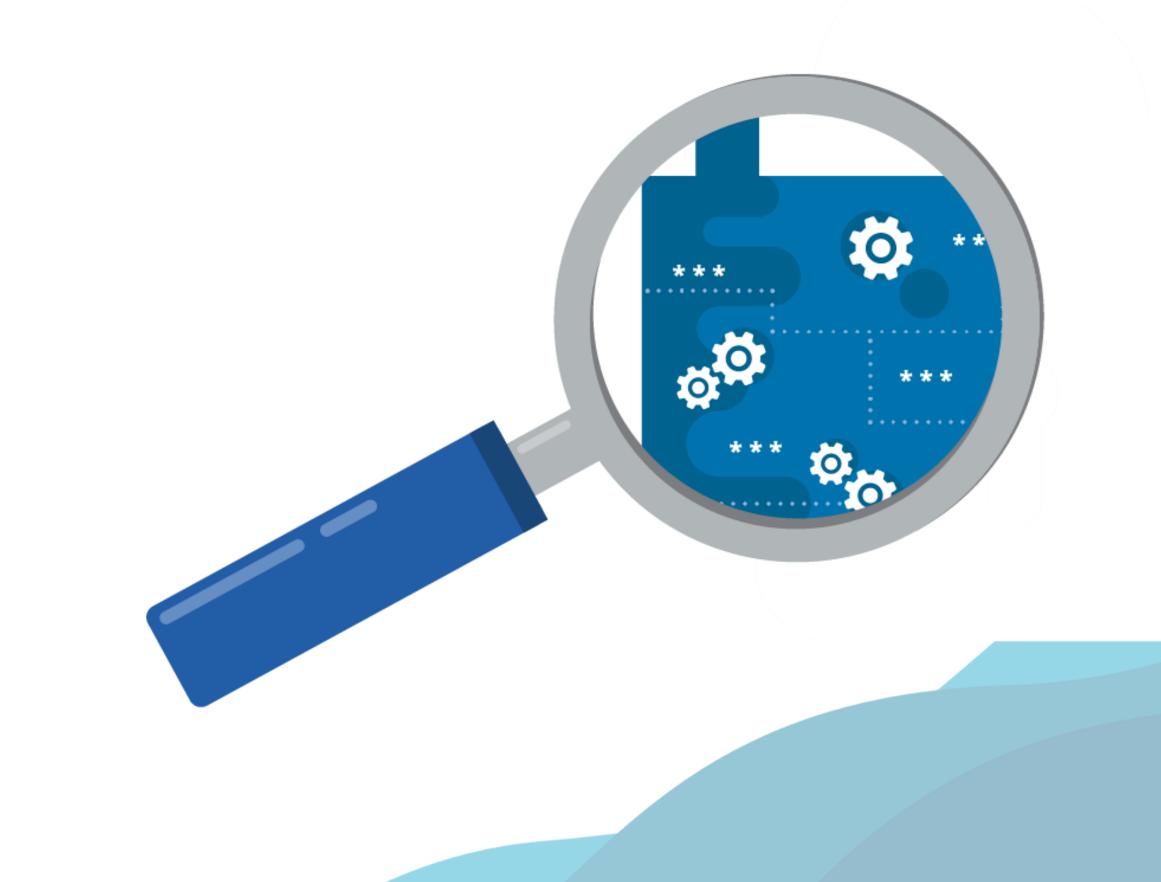
Presenters

Prof. Chandrabhan Sharma Dept. Electrical and Computer UWI, St. Augustine

Dr. Sanjay Bahadoorsingh Dept. Electrical and Computer UWI, St. Augustine

Overview

- Introduction
- Loads
- Load Forecasting
- Factors to Consider
- Demand Projection Techniques
- Closing Remarks



What is the probability of a coin toss being heads or tails? What is the probability that you will always get it correct? Why is the forecast different from the actual? Why does the forecast fail to capture these features from the actual?

Many decision making processes today are still difficult to capture in a probabilistic form.

50% 0% avoid encourage

Introduction

- Forecasting is a necessary and important function in any industry.
- The first oil crisis of the 1970s caught the attention of policymakers.

caught the

Introduction to Load Forecasting

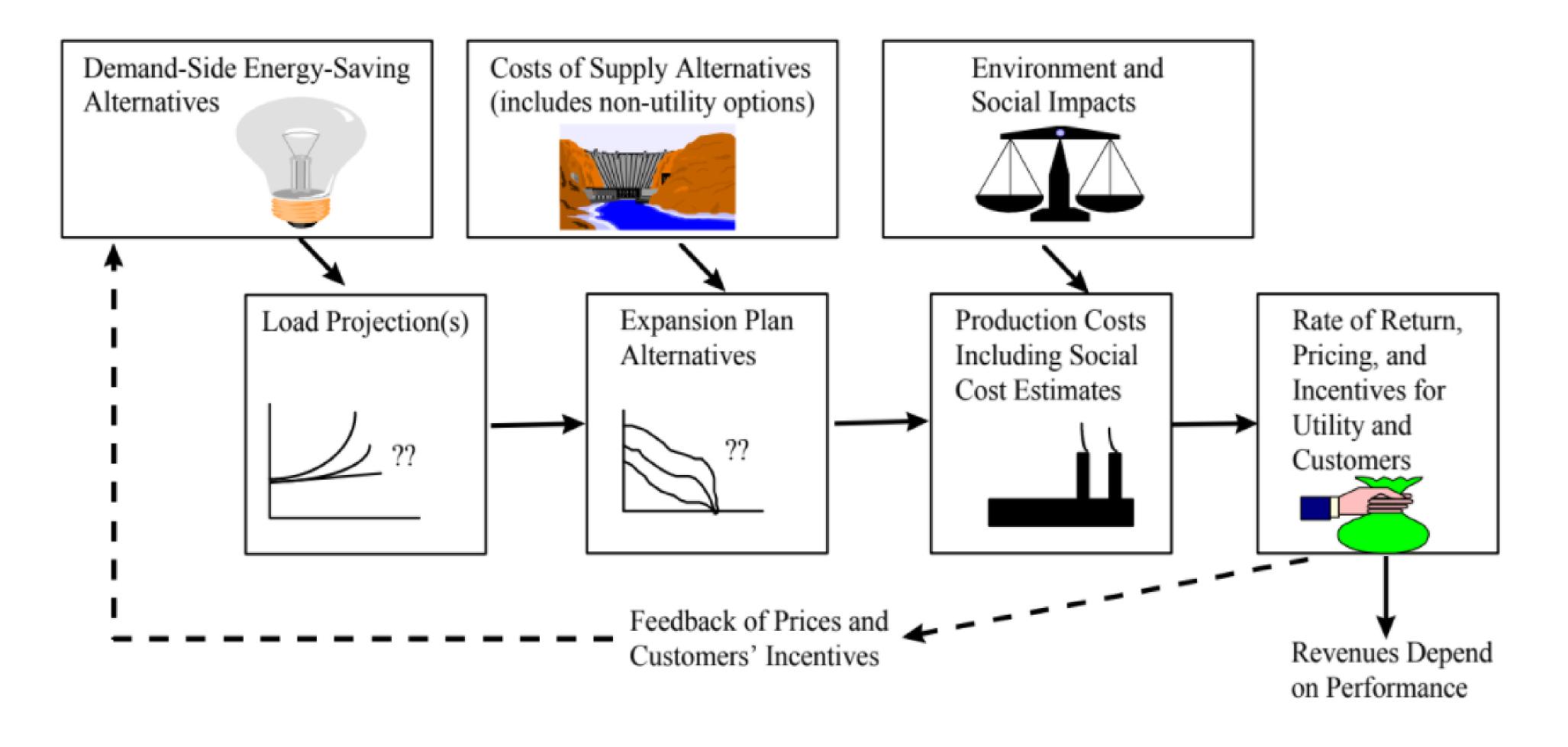
- process.
- Who needs/uses it:
 - Electric Utilities
 - Policy Makers
 - Manufacturers and Suppliers

Energy/demand forecasting is the first step in the energy planning

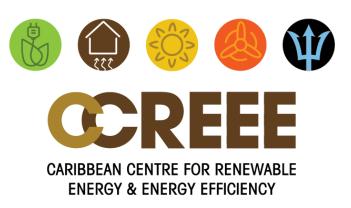
Introduction to Load Forecasting

- Demand and consumption are also used instead of load.
- Energy (MWh, kWh) and power (MW, kW).
- Demand forecast To determine capacity of generation, transmission and distribution required.
- Energy forecast To determine the type of generation facilities required.

Linking to the IRRP



UNEP Collaborating Centre on Energy and Environment



Load Forecasting Objective

Objective is to **minimize errors**.

 Consider the plethora of risks facing the utility and the sector.

From a planning perspective demand forecasts should be slightly higher.

Uses of Load Forecast

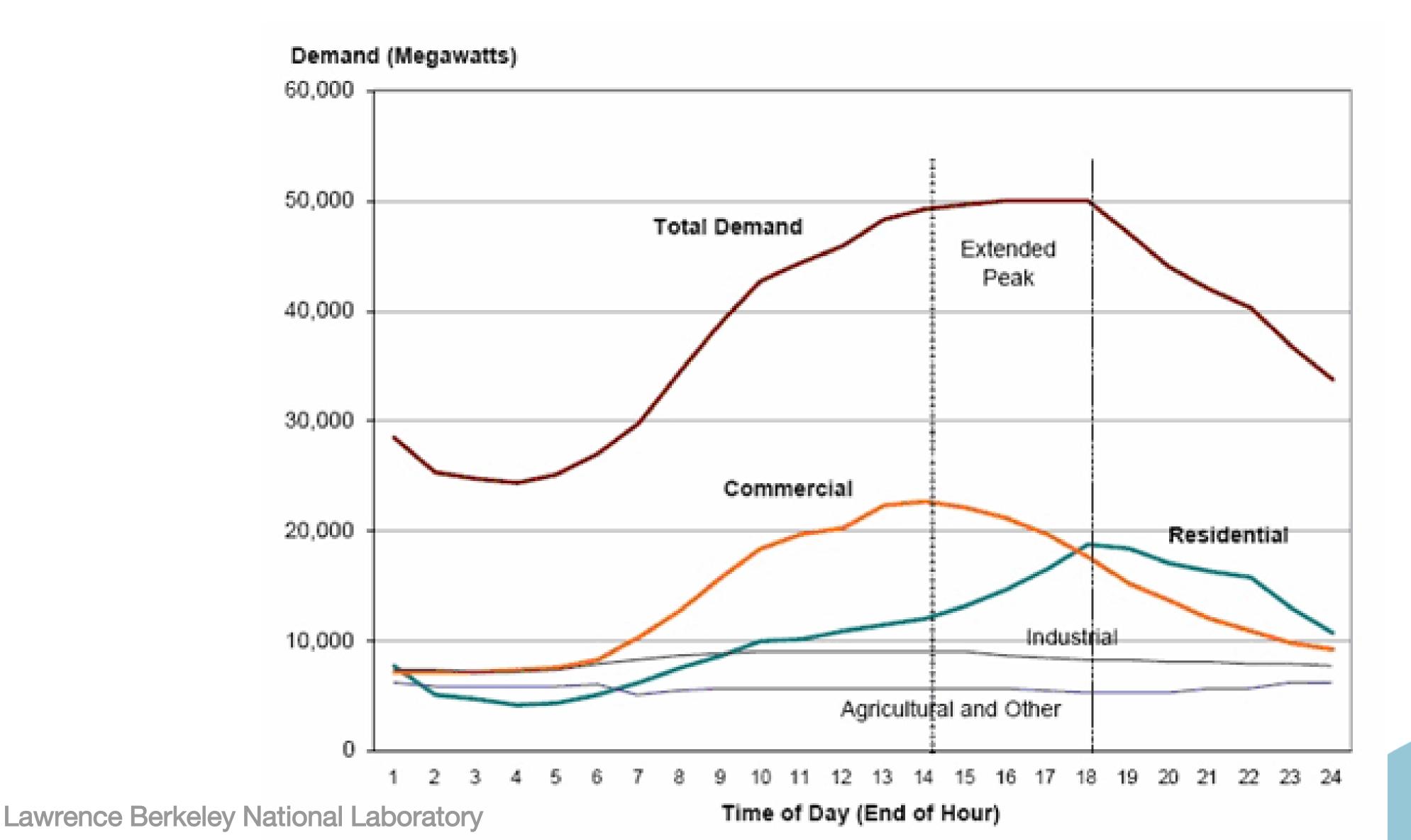
- customers. Used by utility and regulator.
- **Development of Rate Design** requires a projection of the kWh consumption in each rate class over a horizon of about one or two years.
- management modifying their consumption profile. consumption.

Cost of Service - to determine full costs of providing electricity for all

Demand Response - consumers incentivized to participate in grid Energy Efficiency - managing and restraining the growth in energy



Load Profile



Definitions

Demand:

- Load averaged over a specific time. 0
- Load can be kW, kVAr, KVA or A. 0
- Time interval important (usually 15 minutes)

Maximum Demand:

- Largest demand over time period. 0
- Must state demand interval, period and units 0 e.g. 15 mins. Max kW demand for week = 150kW
- **Average Demand:**
 - Average of the demands over a specific period (day, week, month).

Definitions

- Demand Factor:
 - Ratio of maximum Demand to total connected load. Ο
- Diversity Factor:
 - Ο
- Load Factor:
 - Ο Demand for the same period

= Max. non-coincident Demand / Max. diversified Demand

= Avg. Demand of any individual (or group) customers / Max.

Load Classification

Domestic/Residential Demand factor: 70-100% Diversity factor: 1.2-1.3 Load factor: 10-15%

Industrial Small-scale: 0-20 kW Medium-scale: 20-100 kW Large-scale: 100 kW and above - Demand factor: 70-80%

- Load factor: 60-65%

Commercial Demand factor: 90-100% Diversity factor: 1.1-1.2 Load factor: 25-30%

Others eg. Streetlights Demand factor: ~100% Diversity factor: ~1.0 Load factor: ~50%

Load Growth

New Customers

- Increased electrification initiatives
- New construction
 - o Urbanisation (housing, commercial centres)
 - o Industrial facilities
- Population movement
 - o Relocation
 - o In-land migration

New Usage

- New appliances
 - o Electric stove
 - o Air conditioning
 - o Electric vehicles
 - o Energy storage
 - o RE technologies

Load Forecasting

Load Forecasting

.....

A systematic procedure for quantitatively defining future loads.

Types of Load Forecasting

Short Term Load Forecasting

.....

No single forecast that can satisfy all of the needs of a utility. A common practice is to use different forecasts for different purposes.

Medium Term Load Forecasting

Long Term Load Forecasting

Short Term Load Forecasting

- weeks. Workdays + weekends.
- Limited by horizon of temperature prediction. Mean Absolute Percentage Error (MAPE) < 5% acceptable.

- scheduling, system maintenance and unit commitment.

Techniques: Time series analysis (AR, ARX, ARMA etc) | Multiple linear regression | Expert systems approach (neural networks, fuzzy logic, particle swarm optimization)

Short term forecasting is used to provide obligatory information for the system management of daily operations, security analysis, economic dispatch, fuel

Medium Term Load Forecasting

- This forecasting method has its period ranging from one week to one year.
- The forecasts for different time horizons are important for different operations within a utility company.
- Medium term forecasting is used for the purpose of scheduling fuel supplies, maintenance of the power system and unit management.

Long Term Load Forecasting

hiring.

Top-down | Bottom-up Load Forecasting

Techniques: Trend Analysis | Linear multivariable regression | End use method | Scenario approach

This forecasting method has its period which is longer than a year.

It is used to supply electric utility company management with precise prediction of future needs for expansion, equipment purchase or staff

Factors for Consideration

Horizon	Weather	Load	Economy	Data Collection
	Temperature Humidity Wind speed Rainfall Cloud cover	Hourly Daily Weekly Peak Average	Customer income Population size Population growth GDP	Hourly Daily Weekly Yearly Weekdays Weekends/holidays Special events
Short term	Χ	X		
Medium term	X	X	Χ	
Long term M. Mustapha, M. W. Mustafa, S. N. K	halid, I. Abubakar and H. Shareef.	X Classification of electric	X ty load forecasting based on the factors influence	cing the load

M. Mustapha, M. W. Mustafa, S. N. Khalid, I. Abubakar and H. Shareef, "Classification of electricity load forecasting based on the factors influencing t consumption and methods used: An-overview," 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 2015, pp. 442-447. doi: 10.1109/CENCON.2015.7409585

Top-down Load Forecasting

Efficient | Consistent | Business Oriented

- Developing weather indices e.g. hourly temperature, max/min daily temperature, max/min monthly temperature, average daily temperature, average monthly temperature, cooling degree days (CDD above 18 degC).
- Developing macroeconomic e.g. Gross Domestic Product (GDP), number of customers, population, price of electricity, interest rate.
- Developing model(s) for each revenue class e.g. residential load usually has a higher correlation with temperature variables than the industrial load.
- Developing scenarios e.g. weather conditions, economy projections, energy policies, revenue class (separately and collectively)

Bottom-up Load Forecasting

- revenue level class.
- the top level (over forecasting).
- reduce conservativeness.

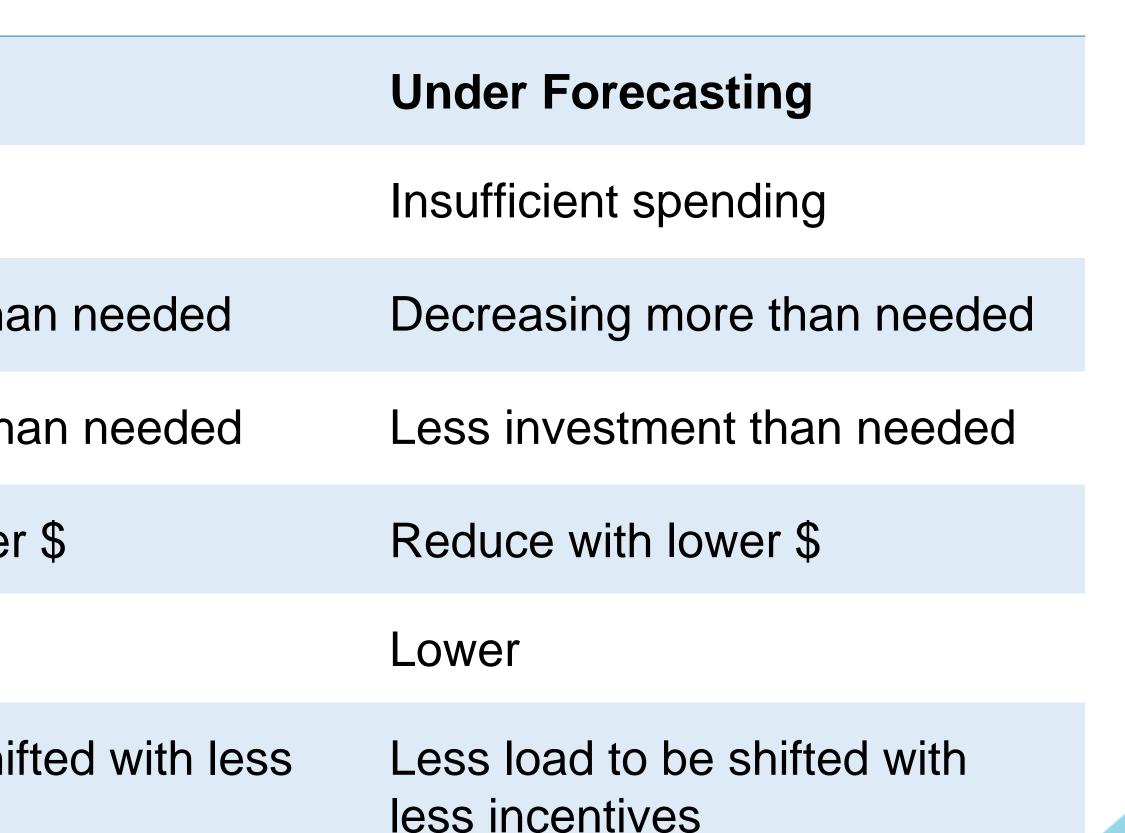
Aggregates forecast first at a lower level then vertically integrates to

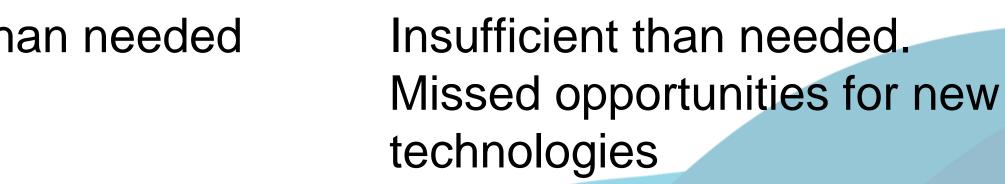
Conservative and often higher than necessary. Unrealistic extreme at

Becomes inefficient, inconsistent and does not meet business needs when the geographical area is large enough to have variation with employed models, duplication of resources and many iterations to

Over Forecasting & Under Forecasting

	Over Forecasting
Upgrading Infrastructure	Increase spending
Rates	Increasing more the
Gen Tran Dist	More investment the
Reliability	Improve with higher
Cost of Service	Higher
Demand Response	More load to be shi incentives
Energy Efficiency	More investment the





Forecasting Horizon

- The forecast horizon should cover the planning horizon.
- The longer the forecast horizon, the more unpredictable the load.
- The data history should be two to three times of the forecast horizon.
- Access to longer than 30 years of load history is rarely available.

Forecasting Horizon

long term load forecasting:

- Ο data history,
- Ο uncertainties.

There are two remedial methods to resolve the insufficient data issue in

1) Make the forecast updating cycle less than half of the length of the

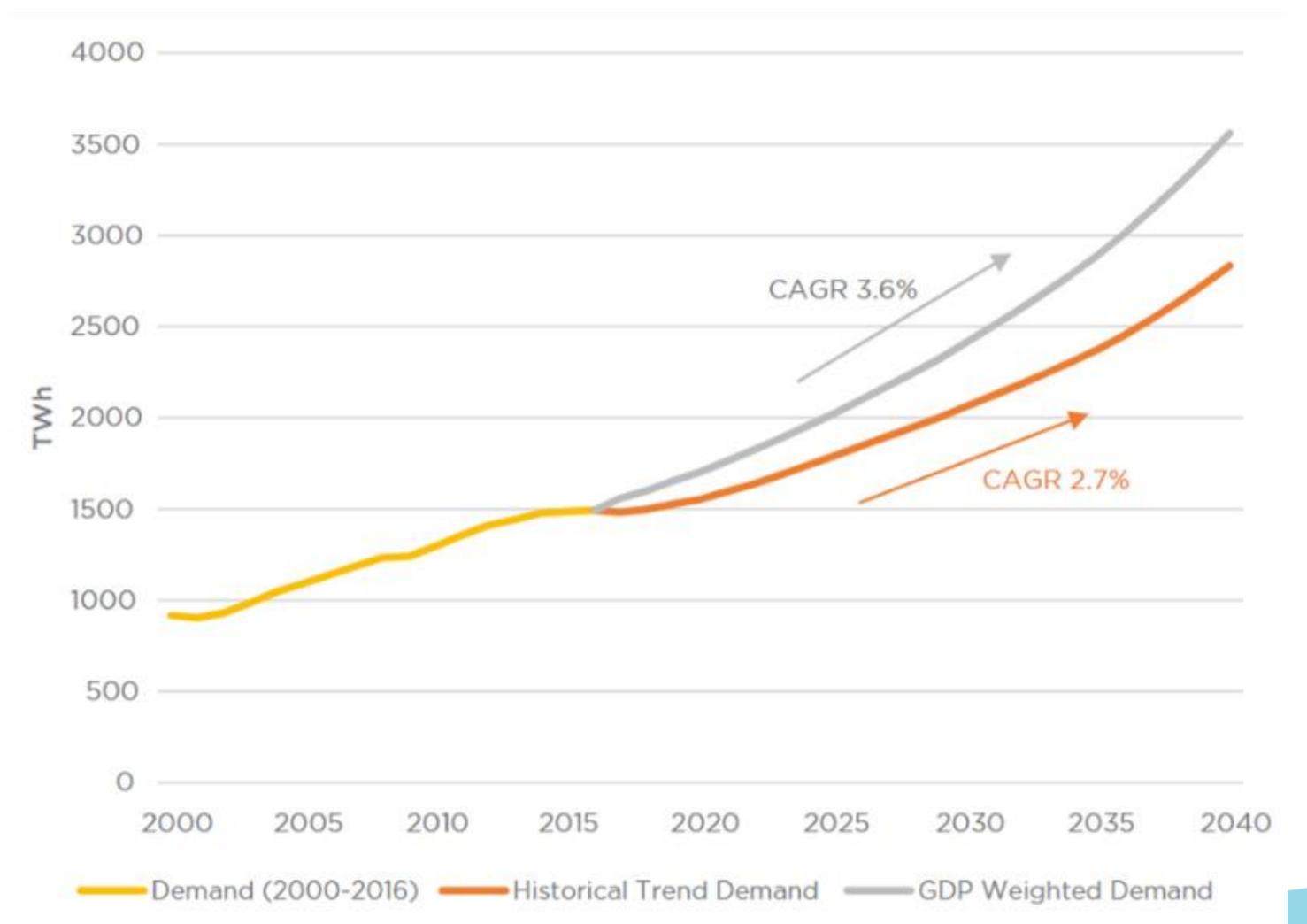
2) Probabilistic load forecasts, to better describe the associated

Forecasting Horizon

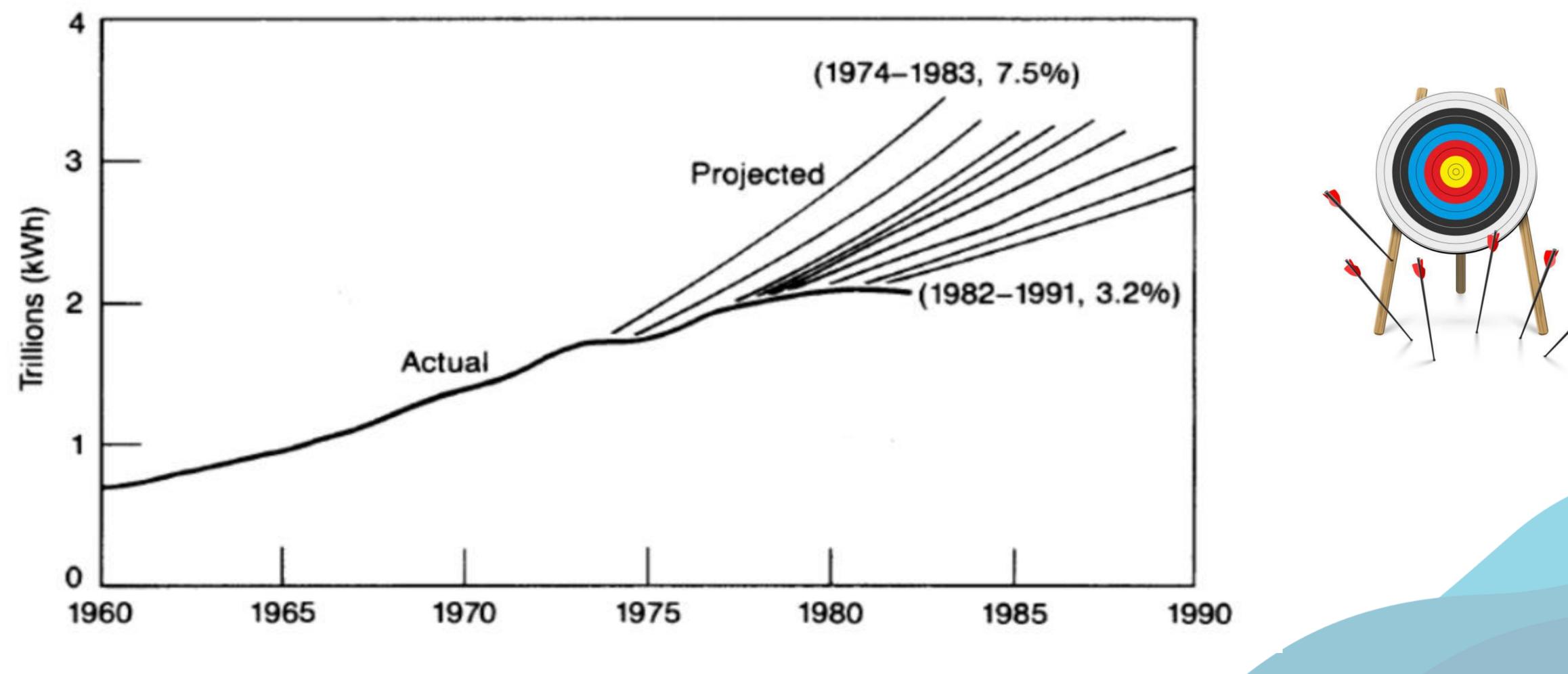
	Updating Cycle	Forecast Horizon
Financial Planning	1 to 5 years	1 to 20 years
Generation Planning	1 to 2 years	5 to 30 years
Transmission Planning	1 to 2 years	5 to 30 years
Distribution Planning	1 to 2 years	1 to 20 years
Integrated Resources and Resilience Planning	3 to 10 years	10 to 50 years
Renewable Energy Planning	1 to 2 years	1 to 30 years

Long Term Demand Forecast

IDB Load Forecast of LAC (2017-2040)



Long Term Demand Forecast



National Electric Reliability Council forecast vs. actual data

A Short Break Before we switch presenters

Factors to Consider

Factors

- Class of customers (residential, commercial, industrial, agricultural, public, etc.)
- Special events (TV programmes, public holidays, etc.)
- Population
- Economic indicators (per capita income, Gross National Product (GNP), Gross Domestic Product (GDP), etc.)
- Electricity price
- Trends in using new technologies

Factors

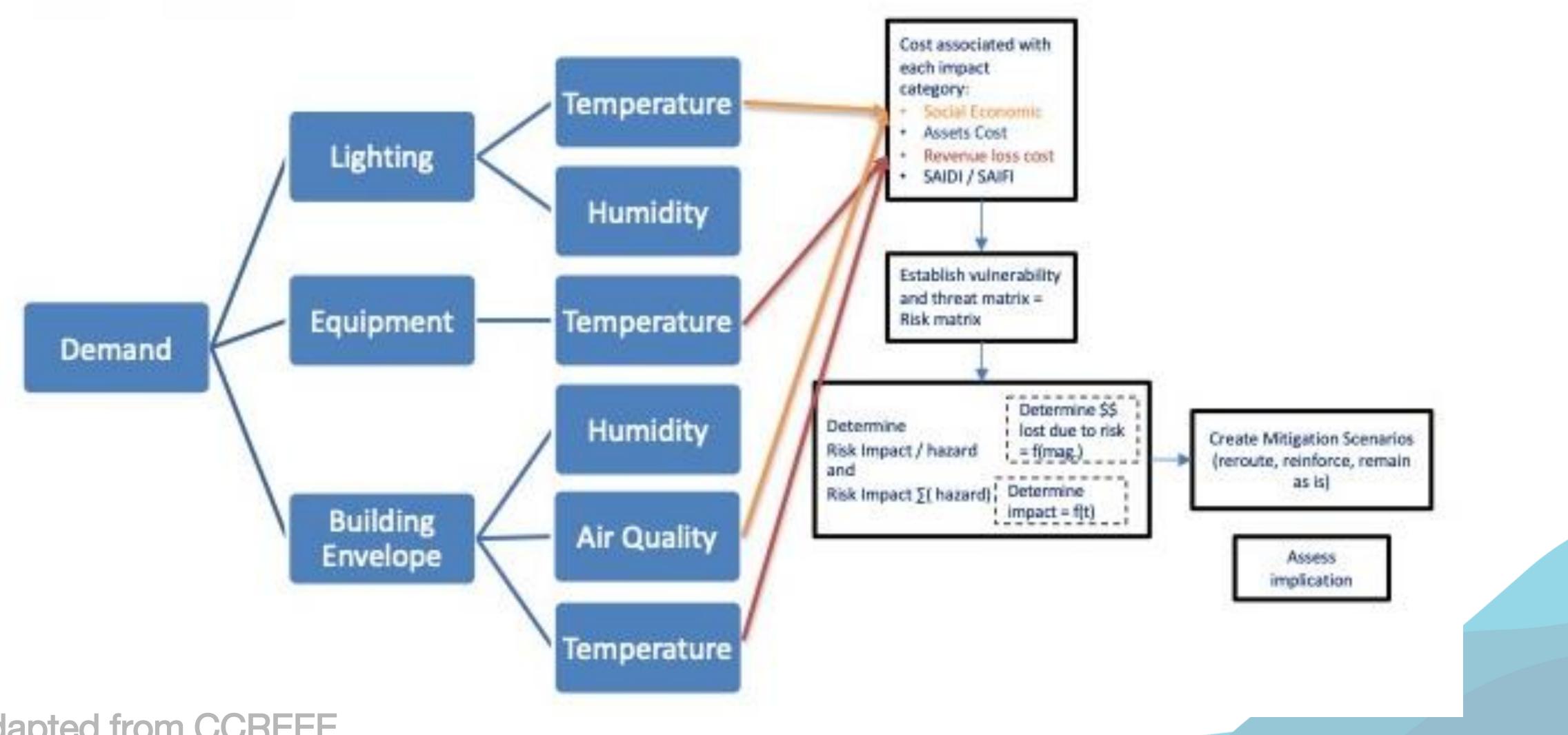
- Hours of the day (day/night)
- Day of the week (week day/weekend)
- Time of the year (season)
- Weather conditions (temperature and humidity)
- Application use

Load Forecasting

Customer Class

- Domestic/Residential Ο
- Commercial Ο
- Industrial Ο
- Street Lighting Ο
- Electric Vehicles
- **Distributed Generation**
 - Renewable Energy Generation + Energy Storage Ο

Building Blocks



Adapted from CCREEE

Impact of Weather

Present condition of meteorological elements | two weeks

- lighting
- Main weather variables that affect the load are:
 - Temperature Ο
 - Cloud cover Ο

0

- Visibility Precipitation
- 0 Rainfall 0

- affects cooling
- affects lighting
- Thunderstorm
- Flooding
- Wind speed

Causes variations in domestic and commercial loads and public

- Height of the cloud cover Thickness
- Cloud amount
 - Time of occurrence and duration

Including Weather Variables

- forecasting.
- forecasting horizon are used to produce load forecasts.

Features presented by the data will guide inclusion. Importance of accurate dataset.

Weather variables used differently for short versus long term load

In short term load forecasting, weather forecasts throughout the

Accuracy of weather forecasts affects the accuracy of load forecasts.

Including Weather Variables

- In medium and long term load forecasting, weather simulation
- Create and generate scenarios based load forecasts.
- Resolution of weather data should have same or better resolution as load data.

Studies to confirm validation of including variables other than temperature in long term load forecasting.

approach is preferred. Based on historical weather information.

Temperature

Average temperature is the most significant on load variations. Temperature and load are non-linearly related. Heating and cooling. Non-linearity is further complicated by humidity. E.g. extended periods of extreme heat, air conditioning usage increased

Year To Date

January - September 2020

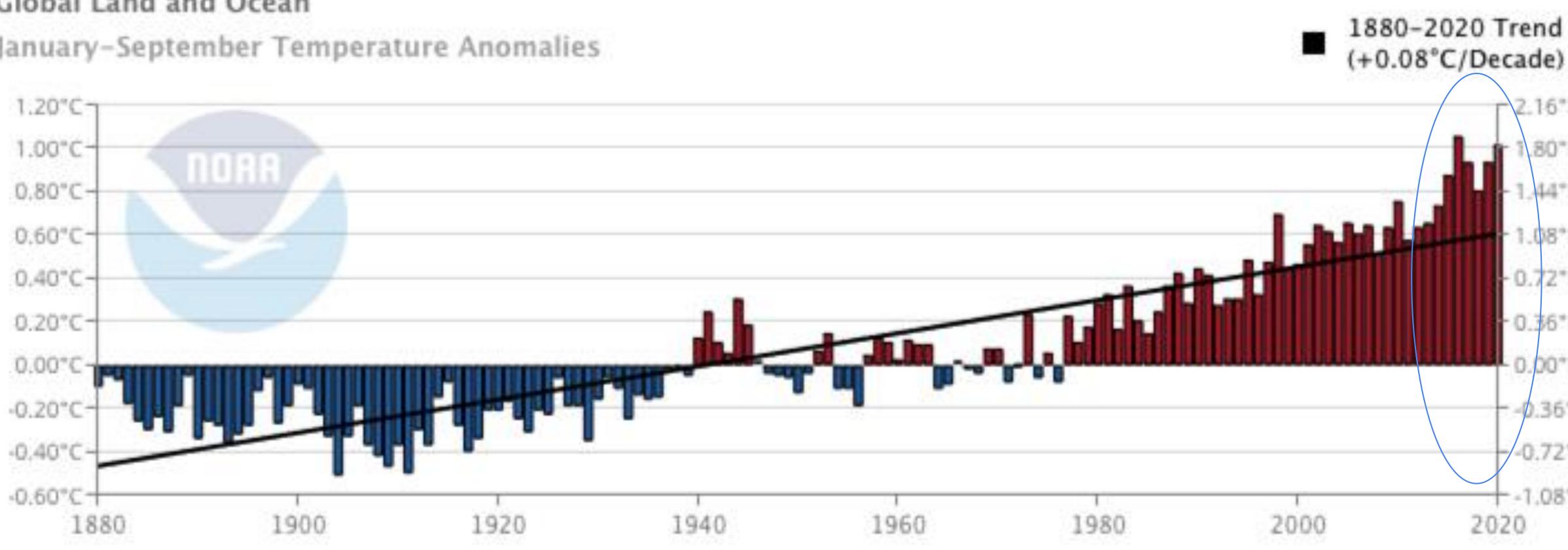
DECION	ANOMALY (1910-2000)	TREND (1910-2020)		RANK		RECORDS		
REGION	°C	°F	°С	°F	(OUT OF 111 YEARS)		YEAR(S)	°C	°F
Caribbean Islands	+1.04	+1.87	+0.09	+0.16	Warmest	2nd	2016	+1.06	+1.91
					Coolest	110th	1910	-0.92	-1.66

https://www.ncdc.noaa.gov/sotc/globalregions/202009#region-year-to-date

Temperature

Global Land and Ocean

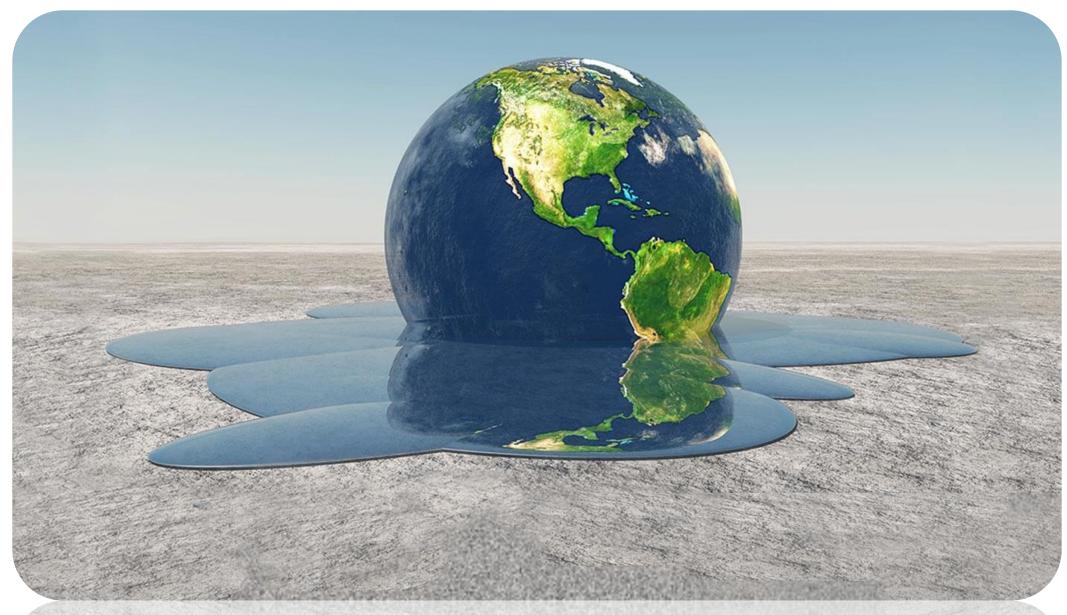
January-September Temperature Anomalies



https://www.ncdc.noaa.gov/climate-monitoring/

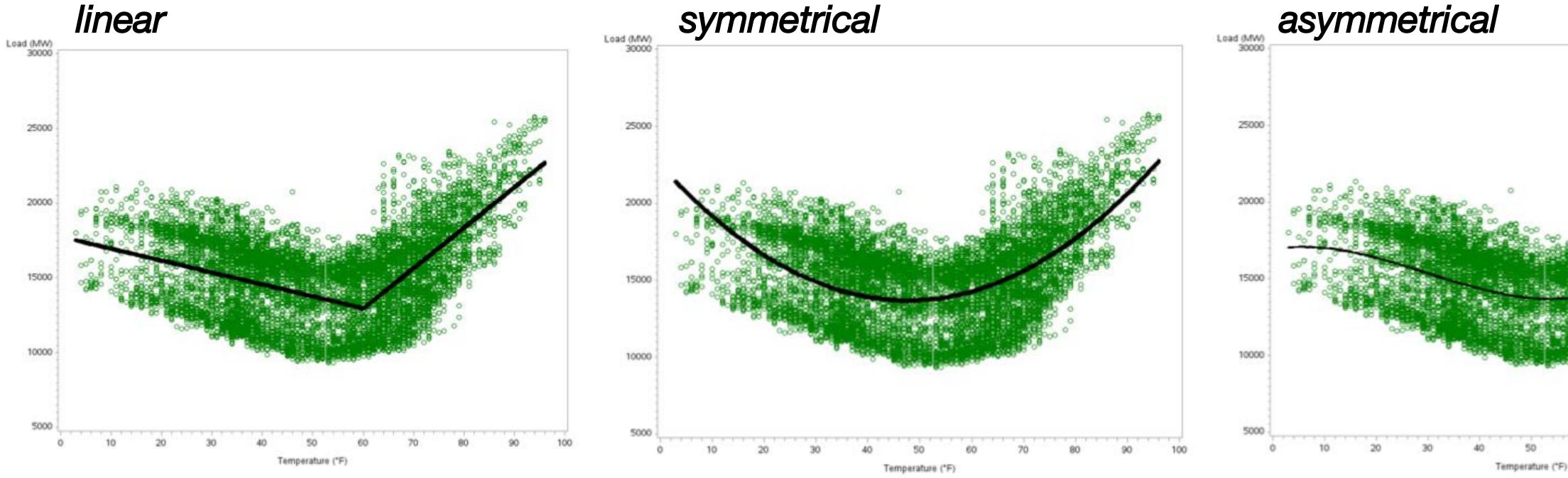
Model Weather Variables

To determine impact of weather variables (climate change) on load demand, it is essential to **analyze data** concerning different weather variables and calculate **regression models** for inclusion into the models.



https://images.app.goo.gl/HfS1nD7mT2DuDgVK8

Load vs Temperature Relationship



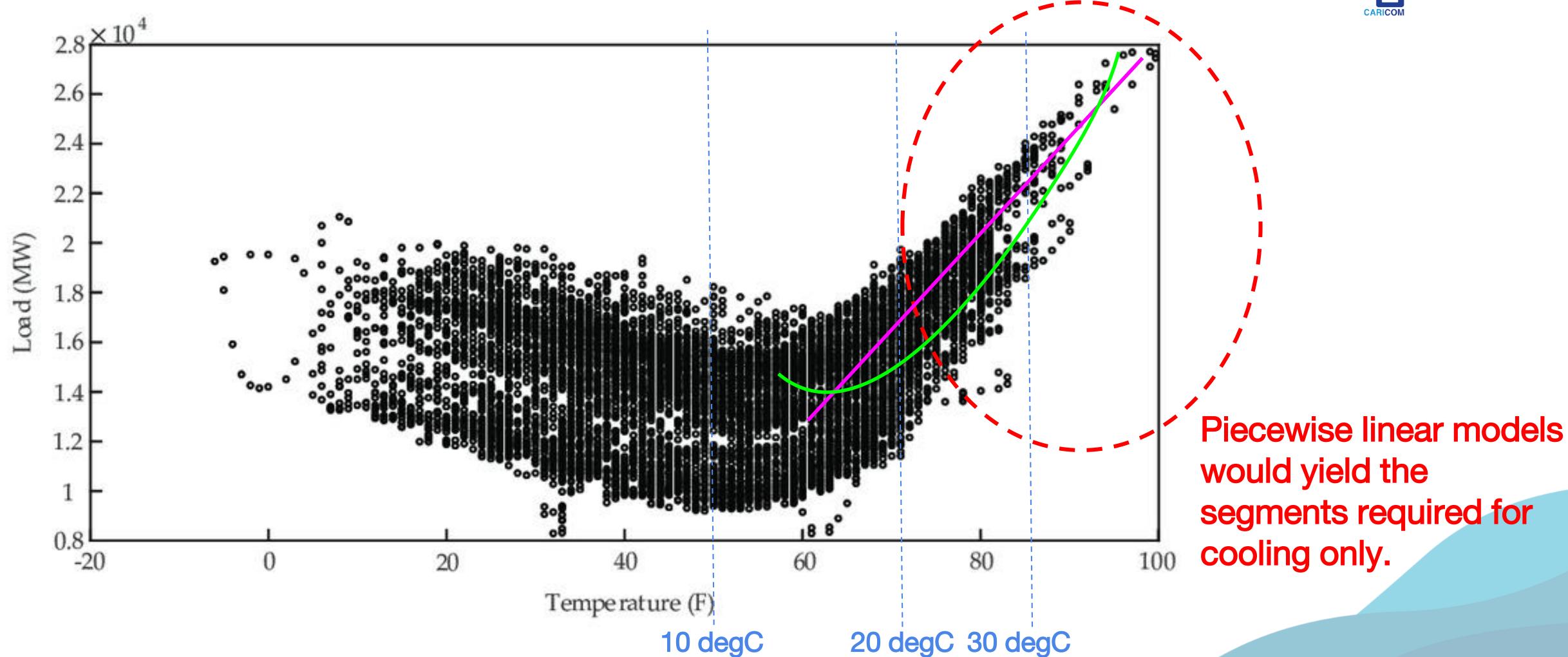
Piecewise linear models

2nd order polynominal regression model

"Load Forecasting Case Study", Tao Hong, University of North Carolina at Charlotte and Mohammad Shahidehpour, Illinois Institute of Technology, 2015.

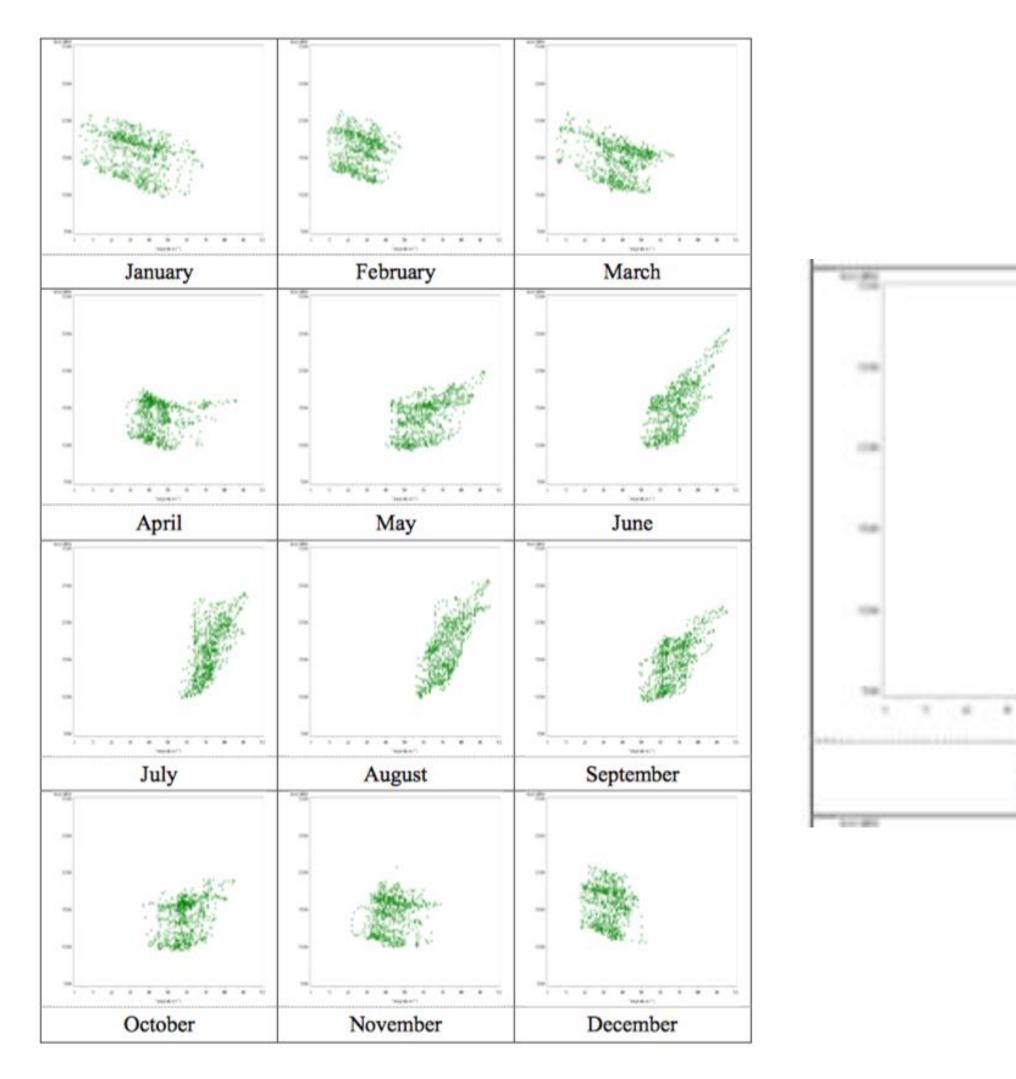
3rd order polynominal regression model

Load vs Temperature Relationship



https://www.researchgate.net/figure/Relationshipbetween-load-and-temperature_fig2_310834746

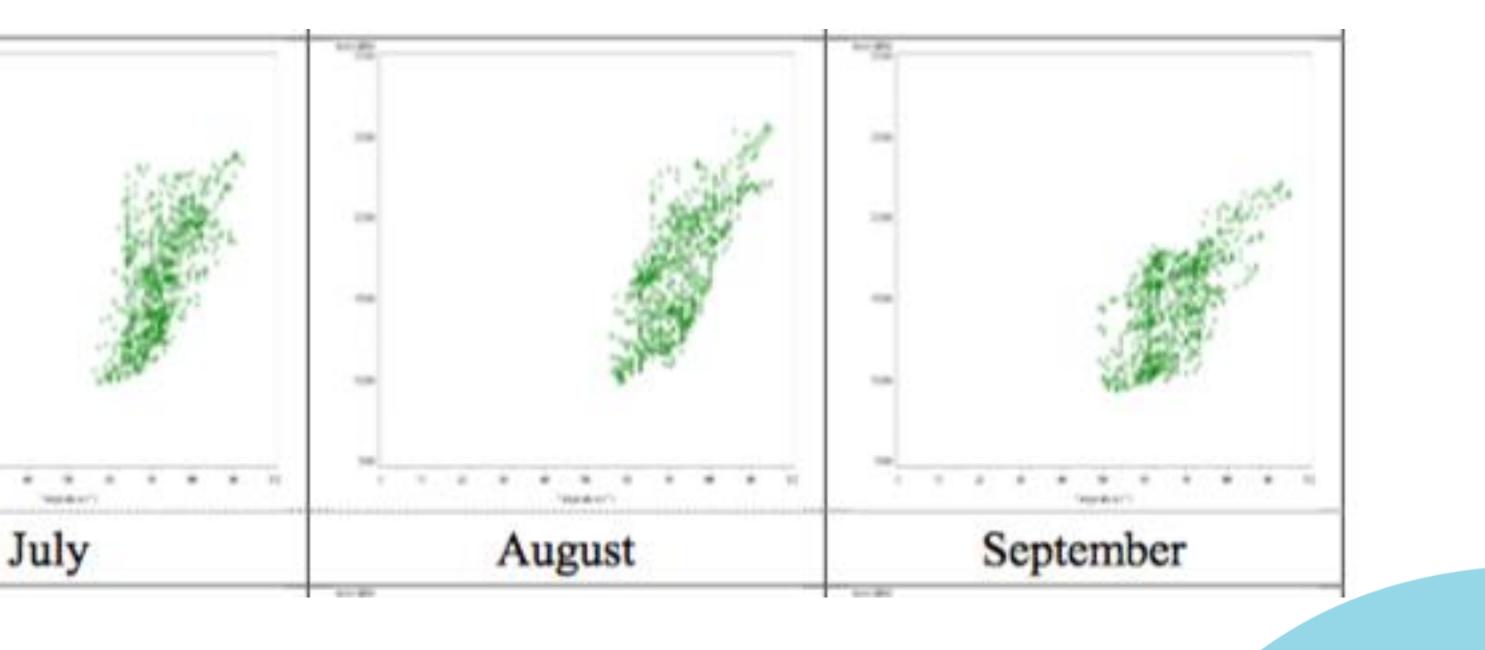
Monthly



"Load Forecasting Case Study", Tao Hong, University of North Carolina at Charlotte and Mohammad Shahidehpour, Illinois Institute of Technology, 2015.

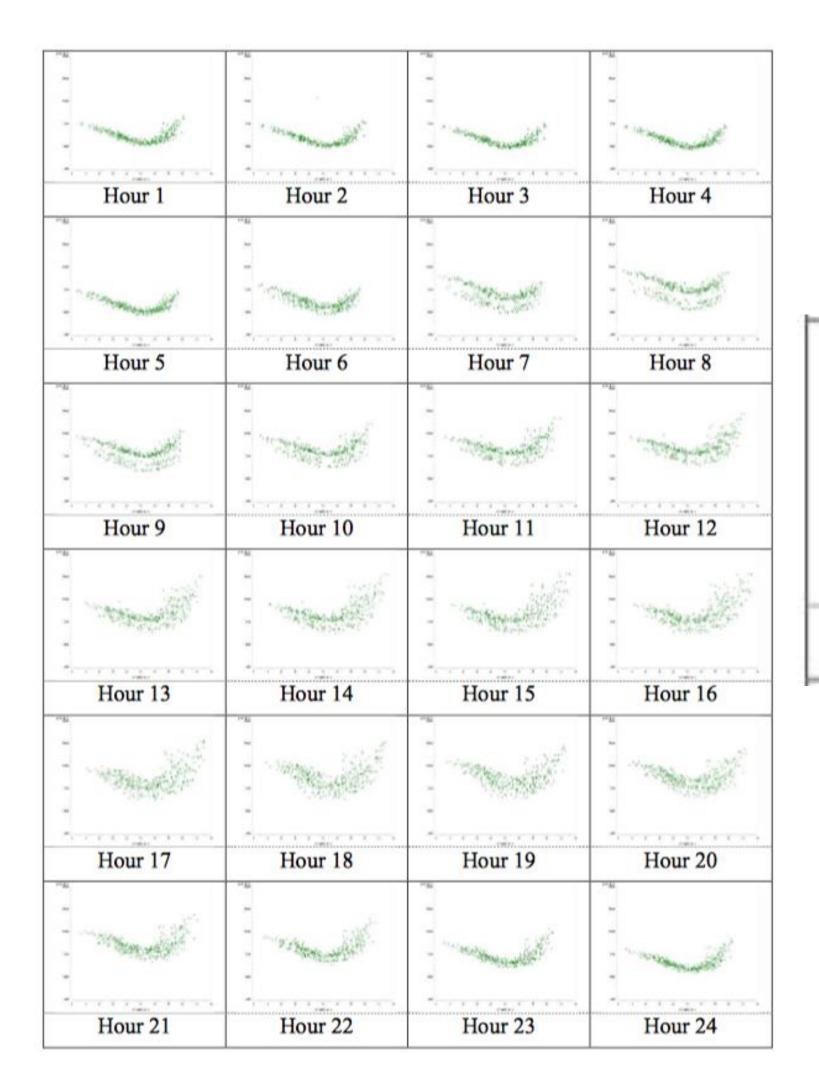
-

.

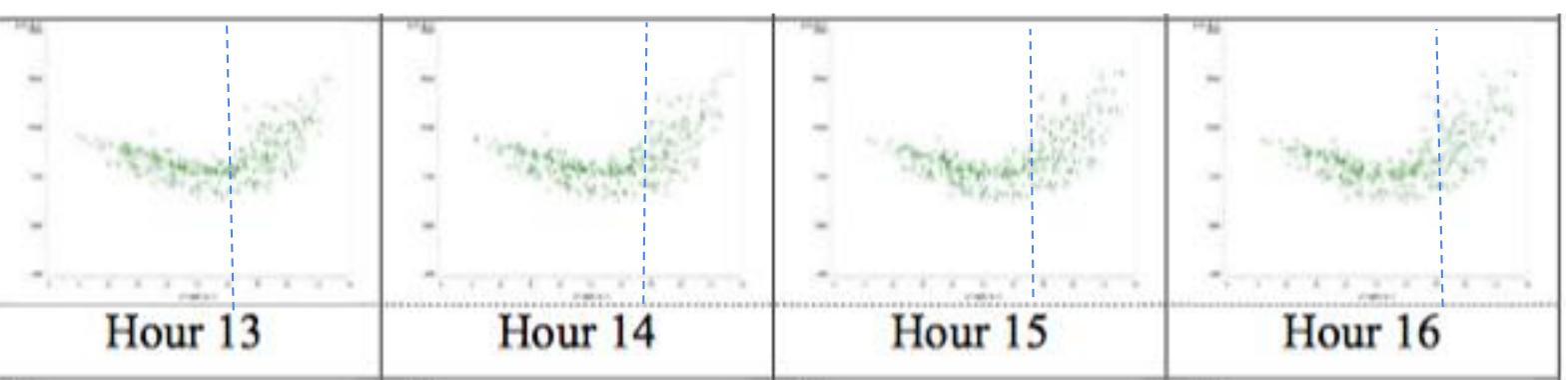


This example is cooling

Hourly



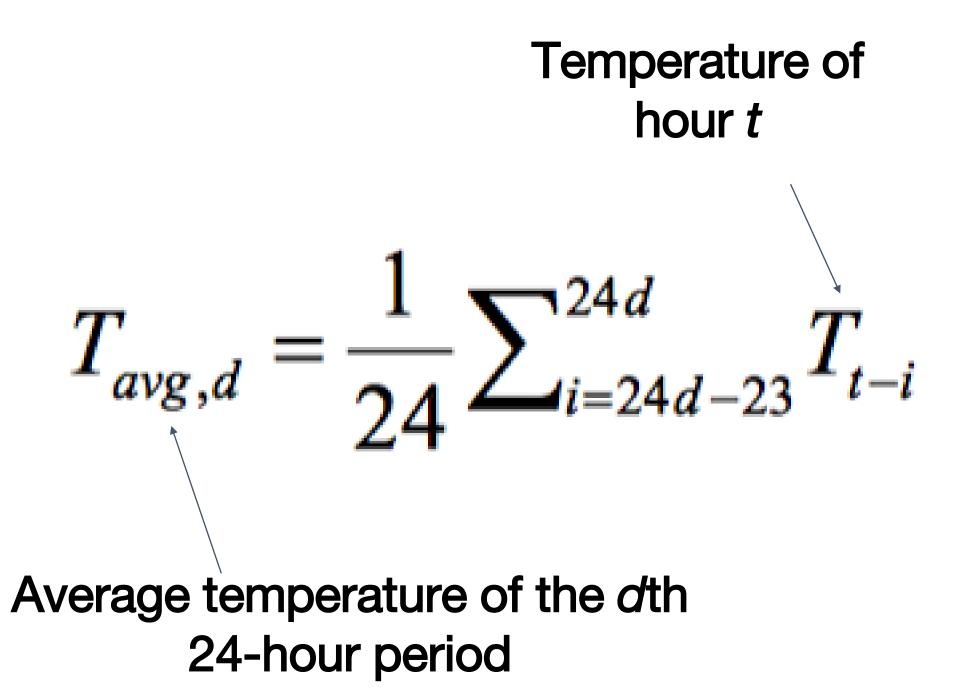
Recency Effect - temperatures of the current and preceding hours affect the load.

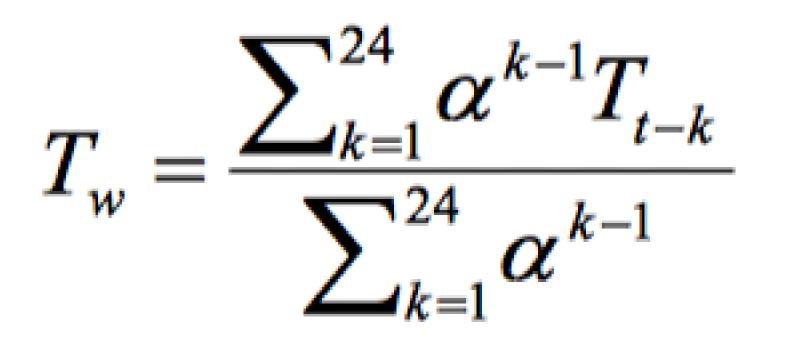


"Load Forecasting Case Study", Tao Hong, University of North Carolina at Charlotte and Mohammad Shahidehpour, Illinois Institute of Technology, 2015.

This example is heating and cooling

Lagged Temperature Variables

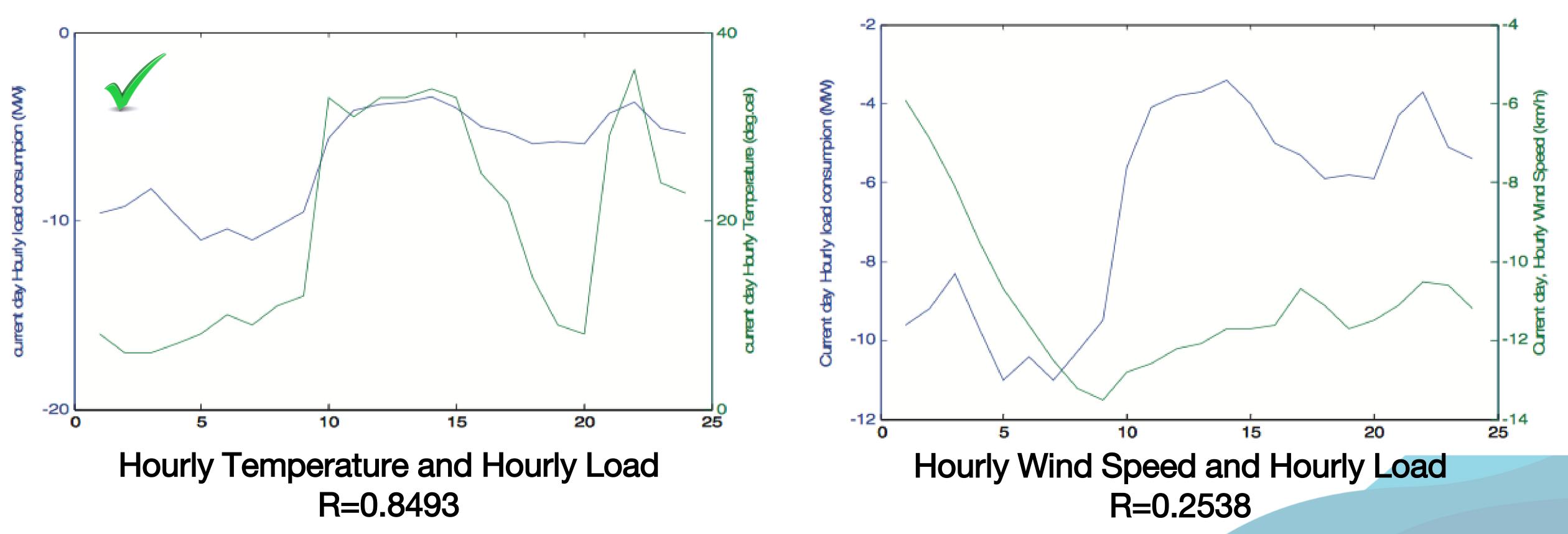




Exponentially weighted temperature to assign higher weights to the recent hour temperatures.

Where α is the base for the exponential weights with the typical range from 0.8 to 1.

High correlation near 1



Classification of electricity load forecasting based on the factors influencing the load consumption and methods used: An overview.

Econometric Model

- techniques of statistical inference.
- consumed at any set of relative prices and income or output.
- In other words, the entire schedule is inferred from a discrete set of observations on agent behaviour.

Econometric models are constructed from economic data with the aid of the

Equations that are estimated from the data are usually derived from first-order conditions from an optimization problem (utilisation or profit maximization). The data on behaviour (purchases of goods) is used to infer the underlying structure of technology or tastes. Once the underlying structure is known, the model can be used to predict the quantity of a particular commodity that will be

Econometric Model Development - 5 Steps

Define likely explanatory variables

- **Customer segmentation** defined.
- Develop a list of the major events that cause them not to consume electricity.
- **Identify at least 10** variables.

•

•

Define functional relationship of explanatory variables and load demand

- **Understand key** assumptions
- May have lags effects.

Test and validate model

Determine error and plot forecasts in historical data period.

Perform multiple regression analysis Statistically determine which

driving variables are retained in the regression.

Research time series of these variables

- Typically data for 20 years back collected to forecast 10 or 15 years into the future.
- Be aware of changed market forces.

Domestic/Residential

Energy Sales $S_{(t)}$, Influenced by

- Personal disposable income, PDI
- Price of electricity, P
- Number of customers, C
- Inflation
- People per household
- Air conditioning
- Appliance price index
- Fuel price
- Technology (changes in energy) intensity)

ime lagged

Single family, duplex, apartment buildings, townhouses

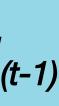
A real example: Multifactorial Approach | Econometric Model

customer elastic (greatest impact) most sensitive

$logS_{(t)} = -4.13 + 1.72logC_{(t)} - 0.161logP_{(t-1)} + 0.363logPDI_{(t-1)}$

least sensitive and negative!

Correlation factor = 0.94Error = 1.4%



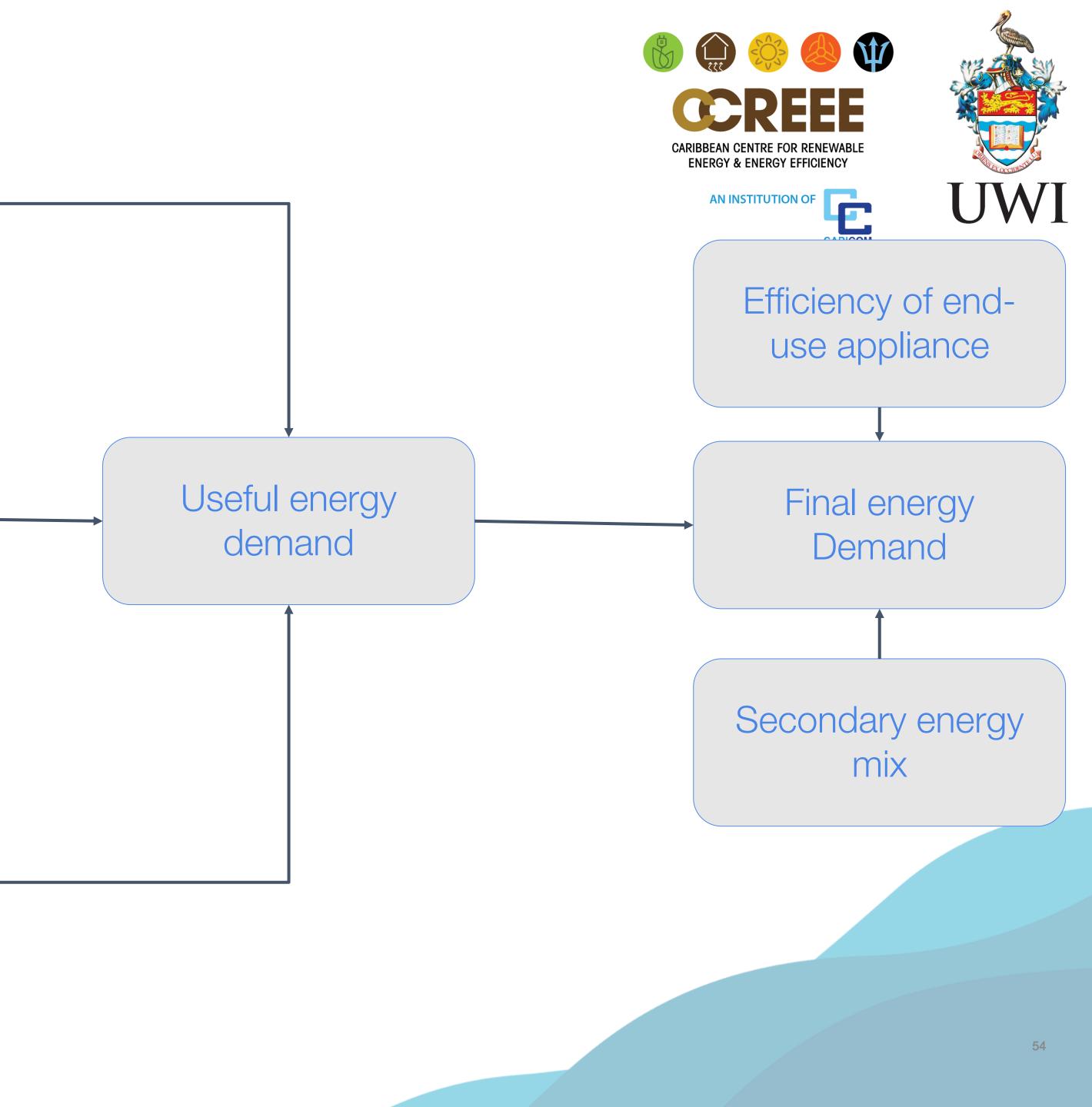
Survey based forecast

Social and behaviour inputs

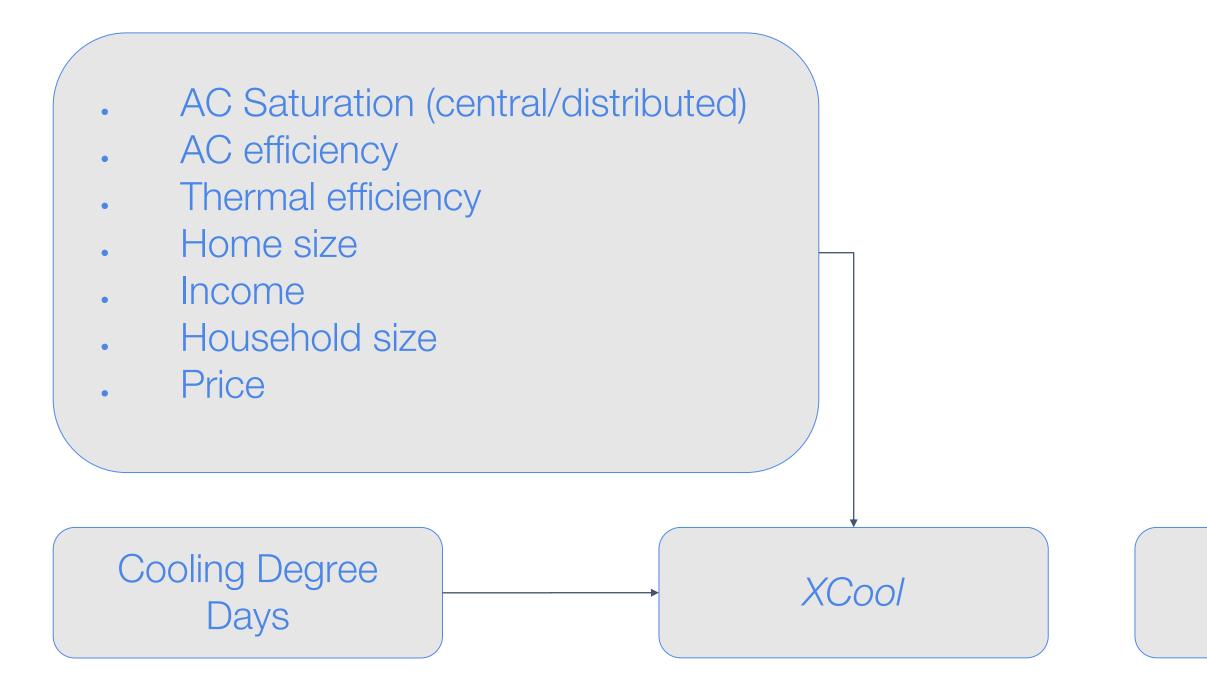
End-use forecast

Economic activity

Technological determinants



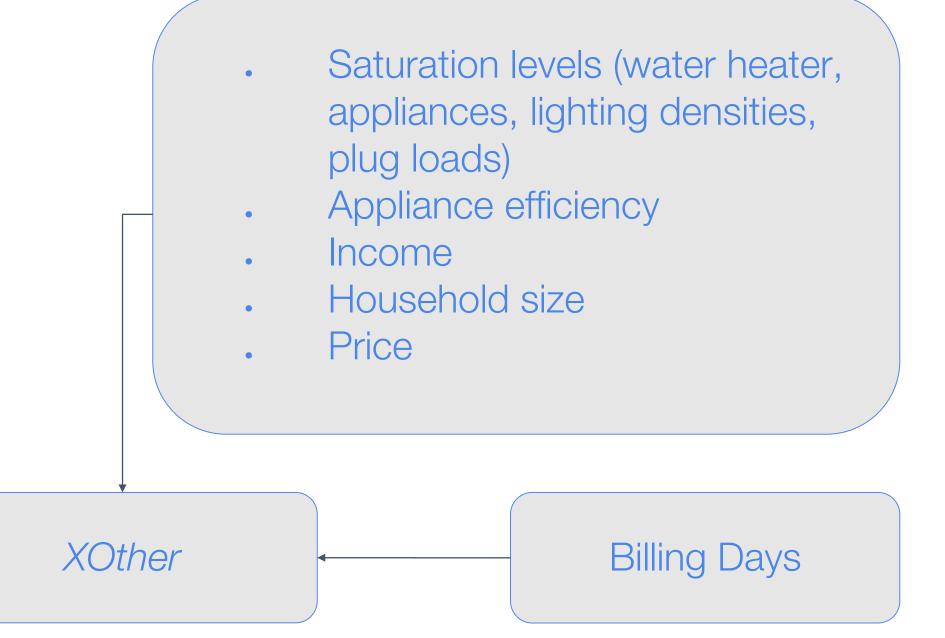
End-Use Model



 $Load_{(t)} = a + b_c * XCool_{(t)} + b_o * XOther_{(t)} + e_{(t)}$

XCool and XOther are structured variables that account for saturation levels, average efficiency levels, and usage trends of end-use categories in an econometric framework.

Itron white paper: Incorporating DSM into the Load Forecast



Data Requirements

Econometric Models will require:

- Historic and projected GDP
- Projected Electricity Price (usually assumed constant)
- Previous demand (recursive in nature)

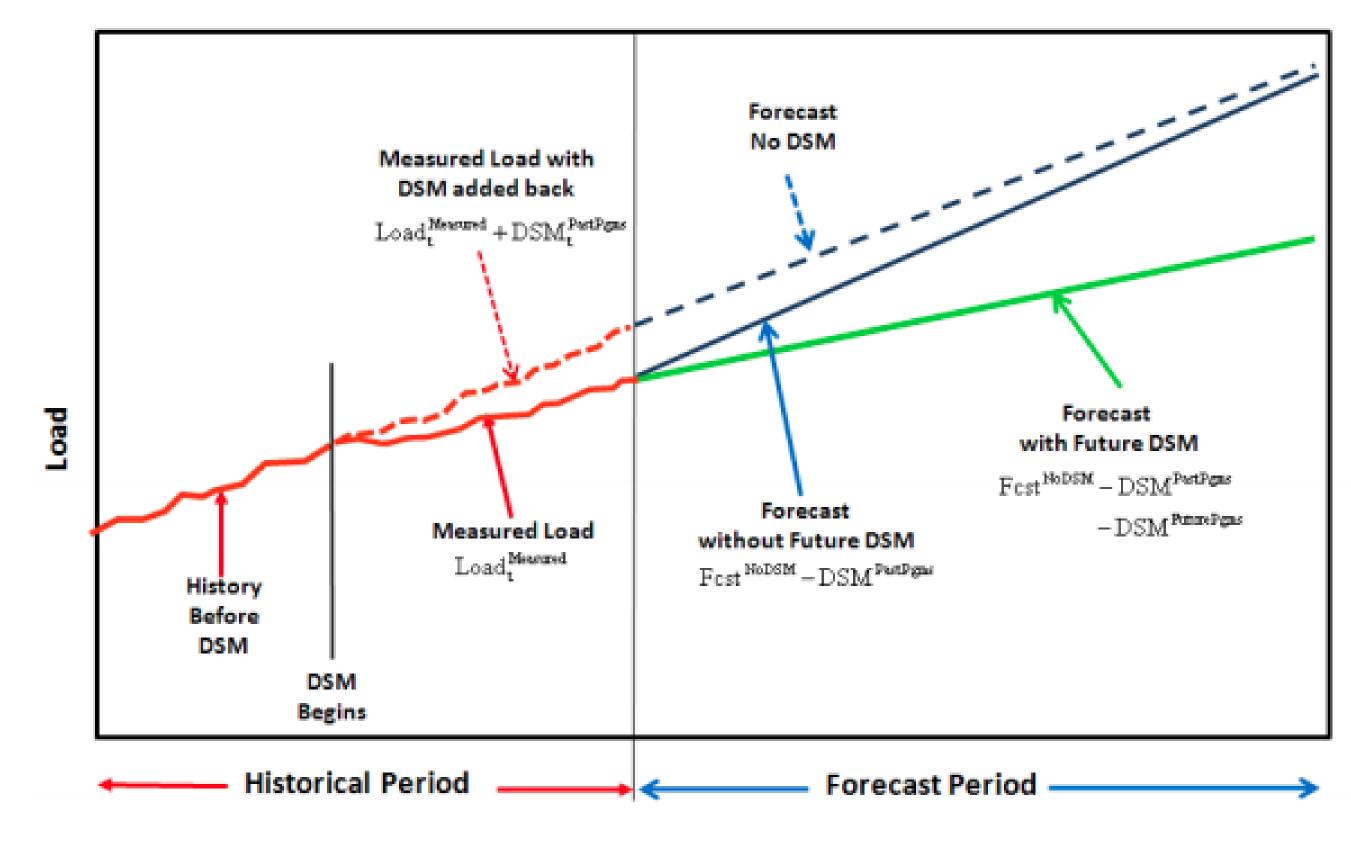
End-user Model:

- Technology based (energy intensity) GDP
- Population growth

Improper data selection and poor data analysis lead to low accuracy

DSM Influence

Adjust the load forecast by accounting for the a DSM contained in the load forecast model



Adjust the load forecast by accounting for the amount and the continuing momentum of the historic

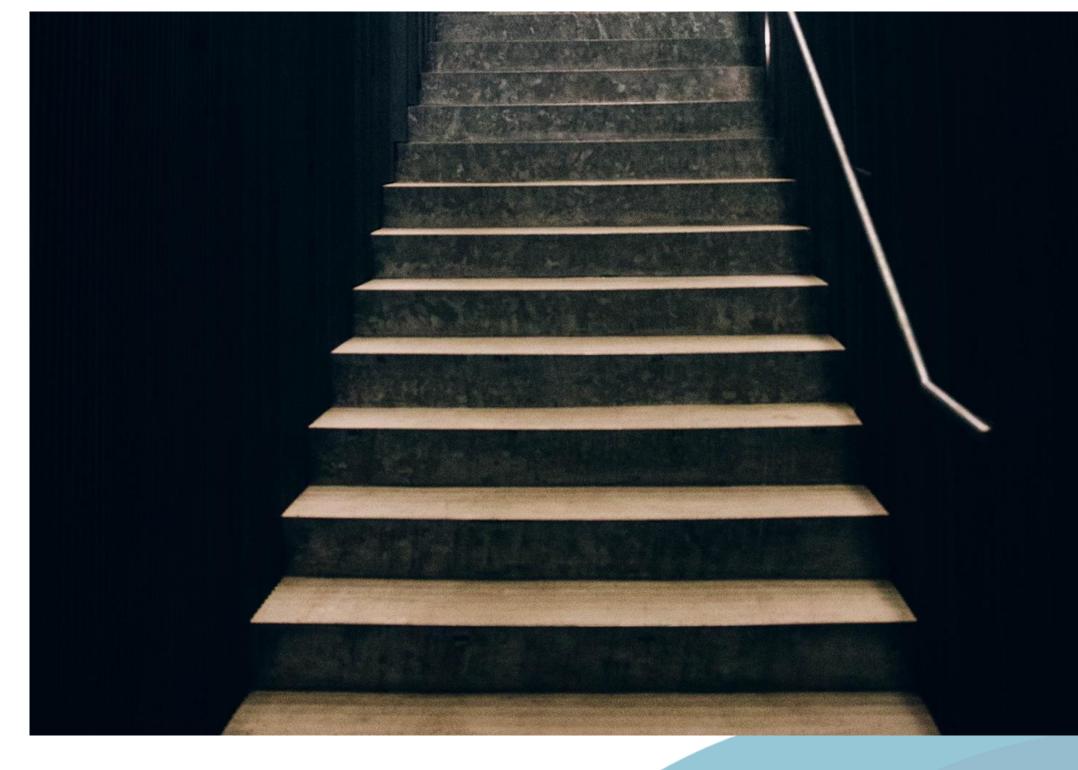
Commercially Available Applications

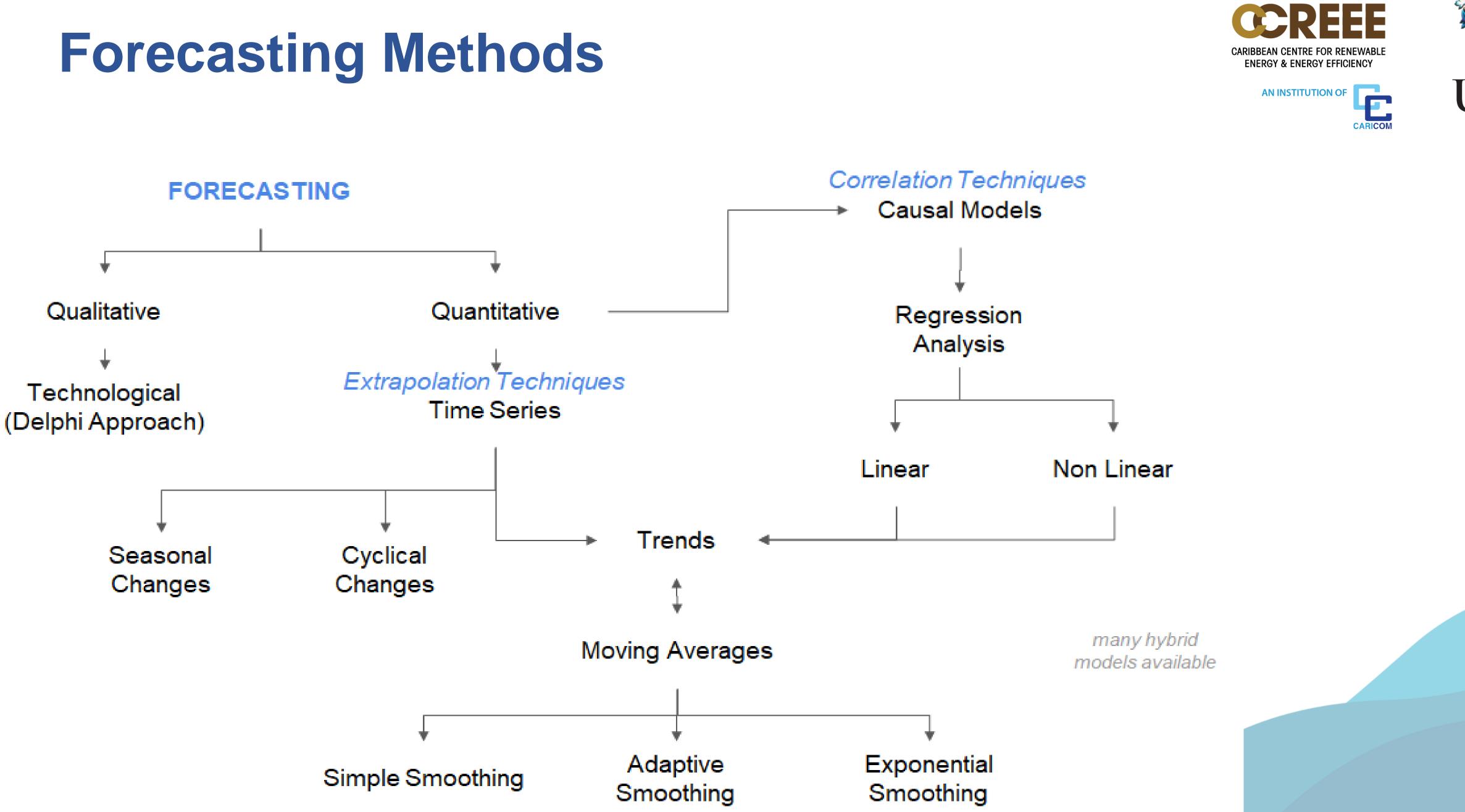
SAS Energy Forecasting: <u>https://www.sas.com/en_us/software/energy-forecasting.html</u> ITRON https://www.itron.com/it/solutions/product-catalog/metrixidr-system-operations LoadSeer http://willdan.com/ServiceBrochures/IA%20Flyer_LoadSEER_v5.pdf Etap https://etap.com/product/load-forecasting-software EnFor https://enfor.dk/services/loadfor/

Demand Forecasting Techniques

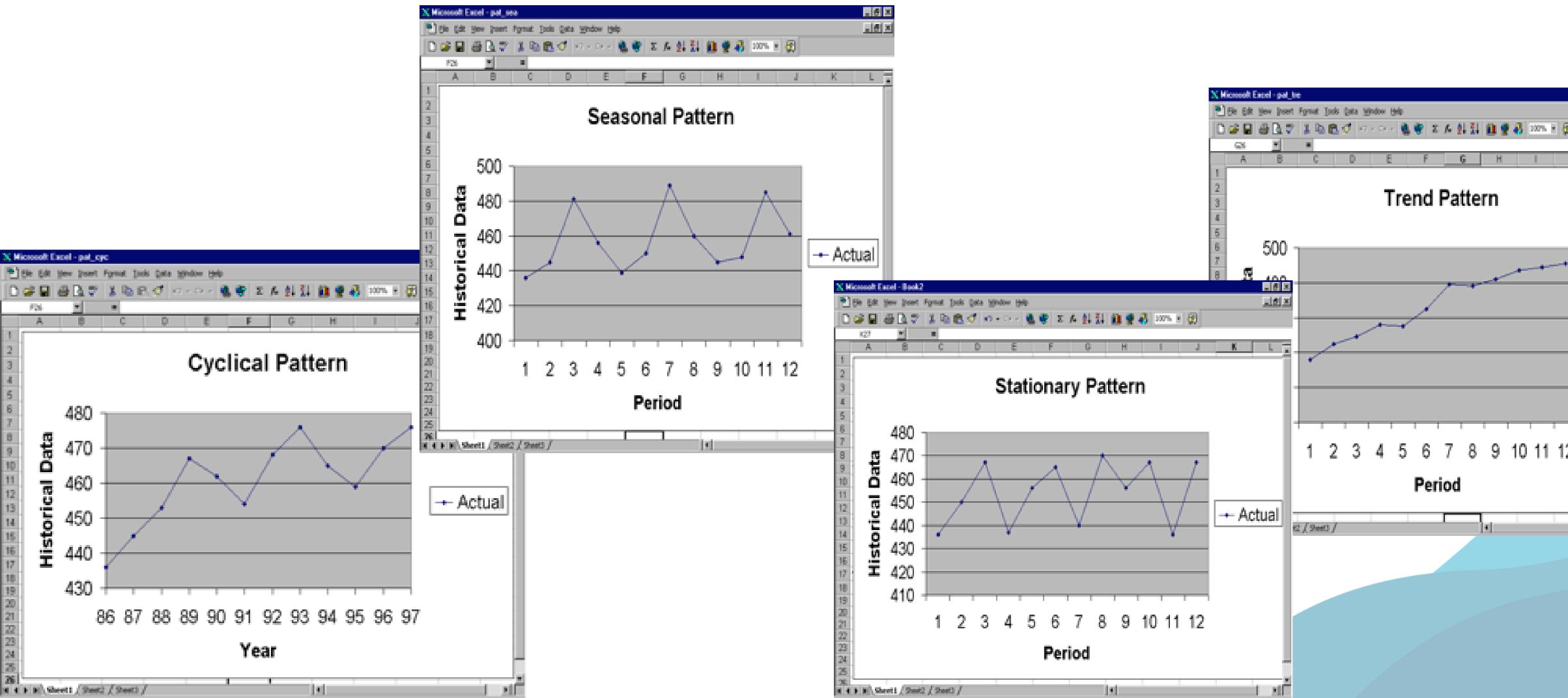
Steps in Demand Forecasting

- Determine the use of the forecast
- Select the items to be forecast
- Determine the time horizon of the forecast
- Select the forecasting model(s)
- Gather the data
- Make the forecast
- Validate and implement results





Quantitative Methods



	. 6 ×
	그리즈
£	

	_		_		-
		К		L	
•	+	Act	tua		
					٢

Let's try an example - Moving Average

You're a manager of a shop that sells preserved fruit. You wish to forecast the sales of red mango for 2009 using a 3 year moving average.

 $\sum Demand$ in the previous N years N

2004	6
2005	4
2006	5
2007	7
2008	9
2009	?

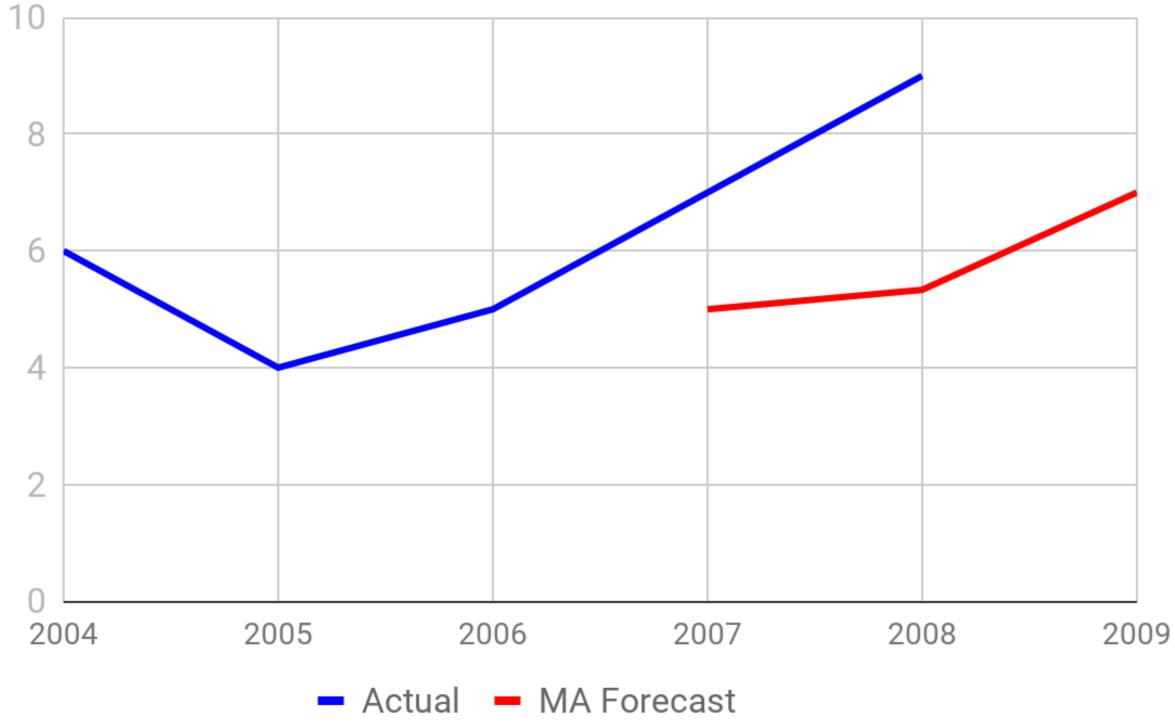
Example - Moving Average

Year	Actual	Moving Total (n=3)	Moving Averge (n=3)
2004	6	n/a	n/a
2005	4	n/a	n/a
2006	5	n/a	n/a
2007	7	6+4+5 =15	15/3=5
2008	9		
2009	n/a		

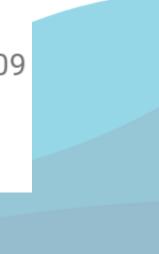
Year	Actual	Moving Total (n=3)	Moving Averge (n=3)
2004	6	n/a	n/a
2005	4	n/a	n/a
2006	5	n/a	n/a
2007	7	6+4+5 =15	15/3=5
2008	9	4+5+7 = 16	16/3 = 5.333
2009	n/a		

Example - Moving Average

Year	Actual	Moving Total (n=3)	Moving Averge (n=3)
2004	6	n/a	n/a
2005	4	n/a	n/a
2006	5	n/a	n/a
2007	7	6+4+5 =15	15/3=5
2008	9	4+5+7 = 16	16/3 = 5.333
2009	n/a	5+7+9 = 21	21/3 = 7



Can add weights based on intuition to produce the weight moving average.



Disadvantages - Moving Average

- Increasing N makes forecast less sensitive to changes
- and forecast
- Difficult to trace seasonal and cyclical patterns
- Require much historical data
- Weighted Moving Average may perform better

Do not forecast trend well due to the delay between actual outcome

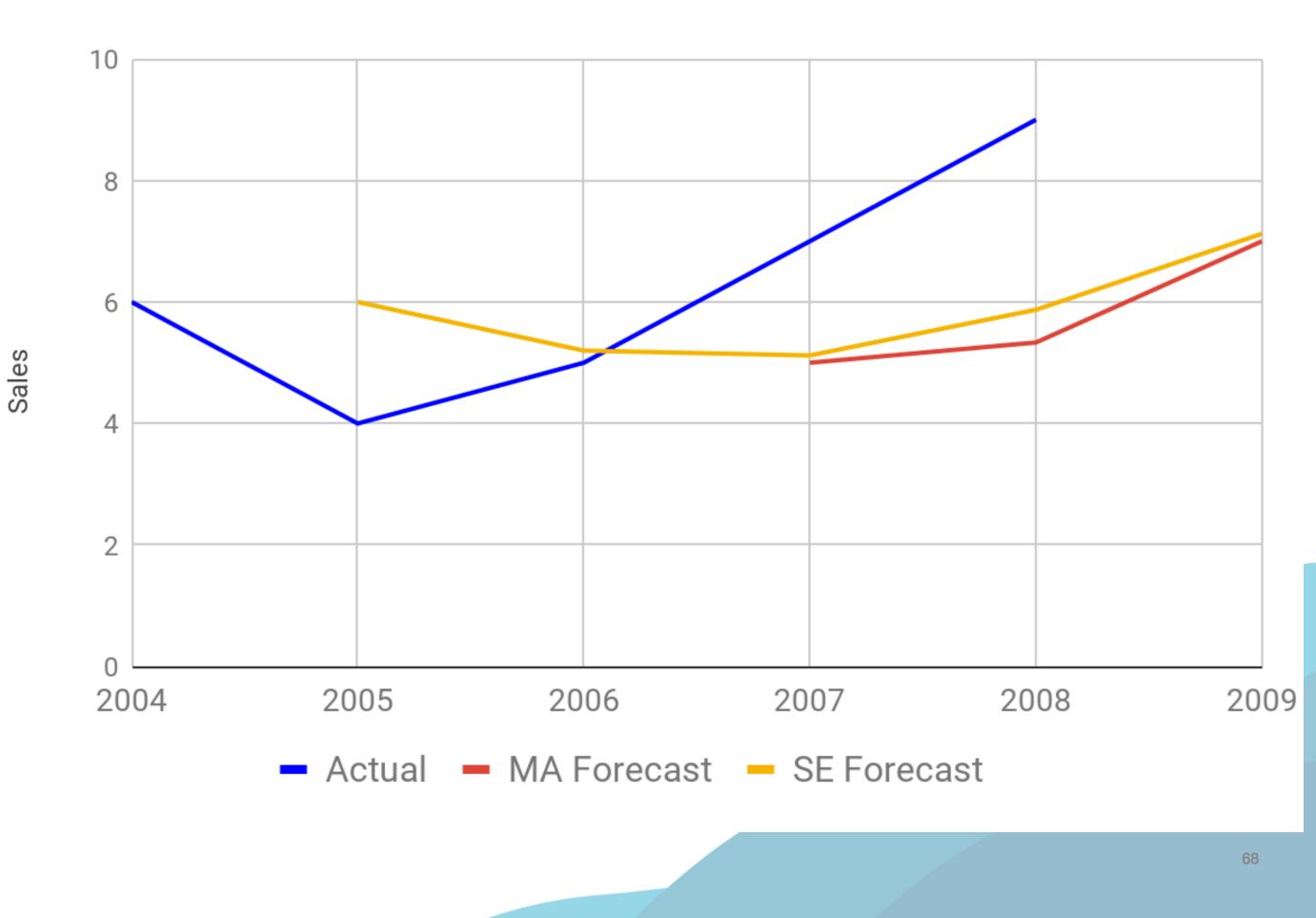
An Example - Exponential Smoothing

You're a manager of a shop that sells preserved fruit. You wish to forecast the sales of red mango for 2009 using single exponential smoothing $\alpha = 0.4$.

2004	6
2005	4
2006	5
2007	7
2008	9
2009	?

Example - Single Exponential Smoothing

Year	Actual	Prediction	
2004	6		
2005	4	6	
2006	5	5.2	6 + (4-6)*0.4
2007	7	5.12	5.2 + (5- 5.2)*0.4
2008	9	5.87	5.12 + (7- 5.12)*0.4
2009	n/a	7.13	5.87 + (9- 5.87)*0.4



Growth Rate

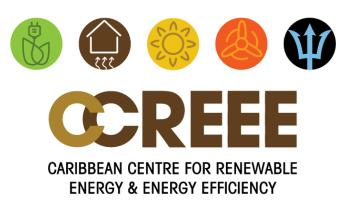
Projected Demand $\rightarrow D_t = D_0(1+g)^t$

Historic Demand Data

	Energy (GWh)	Year	
	1279.07	2019	
Comp	1218.16	2018	
Comp Growtł	1160.15	2017	
CIOWU	1104.91	2016	
(1052.29	2015	
<i>g</i> = (1002.18	2014	
	954.46	2013	
	909.01	2012	
	865.73	2011	
	824.50	2010	

Compound Annual Growth Rate (CAGR)

$$g = \left(\frac{D_t}{D_0}\right)^{\frac{1}{t}}$$



Projected Demand

			1
		Year	Energy (GWh)
		2029	2083.47
ual		2028	1984.26
AGR)		2027	1889.77
		2026	1799.78
		2025	1714.08
= 5%		2024	1632.45
		2023	1554.72
		2022	1480.68
		2021	1410.17
		2020	1343.02
	_		



1 - 1 = 5%

Elasticity

Elasticity Based $\varepsilon_{elasticity} =$ \rightarrow

Historic Energy Sales and GDP Data

	Energy	GDP/Capita		
Year	(GWh)	(USD)	Elasticity	
2017	2827.7	16,050.00	0.71	
2016	2810.7	15,914.29	- 0.38	
2015	2697.9	17,900.00	- 0.37	Avera
2014	2608.9	19,728.57	1.22	Elasti
2013	2568.8	19,478.57	0.84	0.7
2012	2447.9	18,400.00	3.14	
2011	2352.1	18,164.29	0.24	
2010	2271.1	15,828.57	0.62	
2009	2071.2	13,692.86	0.44	
2008	2398.3	19,907.14	0.83	

Average Elasticity 0.73

% Change kWh % Change GDP

Projected Energy Sales from GDP data

	GDP/Capita	Energy
Year	(USD Billion)	(GWh)
2025	18,653.25	3,156.36
2024	18,269.55	3,108.74
2023	17,892.68	3,061.71
2022	17,450.39	3,006.14
2021	17,276.43	2,984.22
2020	17,130.24	2,965.76
2019	16,621.96	2,901.06
2018	16,197.20	2,846.61

Models

MODELS	TIME - SERIES?	PROS	CONS
LOG-LOG	No	Allows for more data volatility, suitable for emerging economies.	Relies on the accuracy of exogenous forecast
ARIMA	Yes	Allows for more data volatility, suitable for emerging economies.	Only historical evolution, lacks expectation
ARIMAX	Yes	Allows for events that did not happen before by including exogenous variables.	Relies on the accuracy of exogenous forecast
VAR	Yes	Multi-variate, allows for cross-variable dynamics.	Only historical evolution, lacks expectation
ETS (EXPONENTIAL SMOOTHING)	Yes	Allows non-linearity in the construction of parameters, and non-stationarity.	Only historical evolution, lacks expectation
ANN (NEURAL NETWORK)	Yes	Allows for non-linearity in parameters, perform better with multicollinearity.	Relies on the accuracy of exogenous forecast

Which method do I choose?

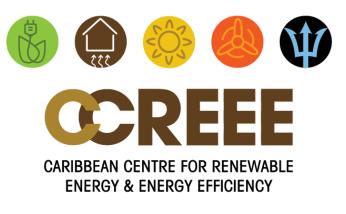
- systems and artificial intelligence).
- Optimum forecast performance
 - Applicability and accuracy
 - Availability of data
 - Size of population

• Depends on how expert one is in that method (time series analysis, expert

Closing Remarks

Facts in Forecasting

- Main assumption: Past pattern repeats itself into the future.
- to the actual data.
- The science and art of forecasting try to minimize, but not to eliminate, forecast errors. Forecast errors mean the difference between actual and forecasted values.
- No forecasting method is effective in all situations. Good judgment, intuition, commercial knowledge and experience to make a forecasting method effective.



General Takeaways (1)

- appliances.
- designing rate structures and financial planning are required.

Load forecasting is key for utility planning and financial survival.

Ever changing risks including generation resource mix, environmental regulation, aging assets and infrastructure, the projected low cost of natural gas, decreasing costs of renewable technologies, new electric

Accurate (as possible) load forecasts for resource planning, rate cases,

General Takeaways (2)

- year.
- Errors exist.



Installed smart grid technologies now contribute to granular big data.

Many factors influence and each model is tailored for each utility, each

Sources of Errors

- Data sources.
- Key information (usually about loads) not considered.
- Forecasts yield higher than physical limit of the end use.

Forecasting Evolution

HISTORICAL CONTEXT

CURRENT CONTEXT

DRIVERS	 Generation capacity planning EE and traditional load management 	 » T&D planning » Strategic R&D » Rise of solar PV, EV, storage 	 » Grid management » Large-scale DER integration » Climate change
DATA SOURCES	 Monthly bills Ad hoc end-use data Load research studies EM&V studies 	 » AMI data » Comprehensive end- use data » DER performance data 	» Big data
FRAMEWORK	 » Total annual consumption » System coincident peak demand 	» Total hourly demand	» Locational hourly demand

Itron Integrated Energy Forecasting Framework White Paper

FUTURE CONTEXT

Thank You

References

- Verlag Berlin Heidelberg, 2011.
- "Electrical Power Systems Planning", A.S. Pabla, Macmillan India Ltd., 1988.
- "Power System Planning", R.L. Sullivan, McGraw-Hill International
- "Power Distribution Planning Reference Book", H. Lee Willis, Marcel Dekker Inc.
- "Load Forecasting Case Study", Tao Hong, University of North Carolina at Charlotte and Mohammad Shahidehpour, Illinois Institute of Technology, 2015
- Numerical Weather Prediction. Energies. 9. 994.10.3390/en9120994.
- 10.1109/CENCON.2015.7409585.
- Itron white paper: <u>Incorporating DSM into the Load Forecast</u>

"Electric Power System Planning: Issues, Algorithms and Solutions", Hossein Seifi and Mohammad Sadegh Sepasian, Springer-

. Cai, Guowei & Wang, Wenjin & Lu, Junhai. (2016). A Novel Hybrid Short Term Load Forecasting Model Considering the Error of

Itron's Integrated Energy Forecasting Framework: Data-driven insights to take action in the era of Distributed Energy Resources Mustapha, Mamunu & Mustafa, Mohd & Abd Khalid, Saifulnizam & Abubakar, I. & Shareef, Hussain. (2015). Classification of electricity load forecasting based on the factors influencing the load consumption and methods used: An-overview. 442-447.

