Demand Side Management

20th April 2021
Presenters

Prof. Chandrabhan Sharma
Dept. Electrical and Computer
UWI, St. Augustine

Dr. Sanjay Bahadoorsingh
Dept. Electrical and Computer
UWI, St. Augustine
Overview

- Introduction
- Evolution of DSM Technology
- Challenges
- DSM – Global and Region
- Conclusions
Introduction
Demand Side Management (DSM) refers to a group of actions/activities/programs to influence modification of the consumer’s demand for energy.
Supply Side Management vs DSM

GENERATION
- Heat rate improvement
- Plant load factor improvement
- Clean fuel
- Renewable energy

TRANSMISSION AND DISTRIBUTION
- Improving HV/LV ratio
- Efficient transformers
- Transformer right-sizing
- Re-conductoring
- Reducing pilfering

END-USE
- Systems approach to improve process efficiency
- Efficient equipment
- Efficient appliances
- Stagger load-profile
- Tariff regulation

Supply Side Management

Demand Side Management
Introductory Video

Demand Side Management: The role of Electricity Utilities in India’s low carbon development, TERI, 2018
http://www.youtube.com/watch?v=RgGAMLRUH0E
DSM in the IRRP Process

- Demand-side Energy-Saving Alternatives
- Costs of Supply Alternatives (including non-utility options)
- Environmental and Social Impacts

Load Projection(s) → Expansion Plan Alternatives → Production Costs (including social cost estimates) → Rate of Return, Pricing, and Incentives for Utility and Customers

Feedback of Prices and Customers' Incentives

Revenues depend on performance

Adapted from UNEP Collaborating Centre on Energy and Environment
How DSM fits into the bigger picture?

International Rivers 2013: An introduction to integrated resource planning
DSM Benefits

- Deferral of investments in generation and networks
- Reduction in technical losses
- Improvement in network reliability due to reduced load and associated outages
- Social benefits as consumers can improve their standard of living and more can afford service through efficient use of power
- Reduction of greenhouse gas emissions
- Promotion of renewable energy and sustainable energy development
DSM changes the Load Profile

Focus is on reducing area under graph. This means less energy is used in a given period.
Most desired form of DSM.

Permanent solution that, while may be costly to implement at first, saves both money and power in the long-term.

Other measures can cause shifts in load profile, Energy Efficient measures can reduce emissions and energy usage.
Categories - Energy Efficient Investments

Residential electricity consumption by end use, 2015

- air conditioning 17%
- space heating 15%
- water heating 14%
- refrigerators 7%
- previously published end uses
- lighting 10%
- TVs and related 7%
- clothes dryers 5%
- new end uses

- ceiling fans
- air handlers (heating)
- separate freezers
- cooking
- dehumidifiers
- microwaves
- pool pumps
- air handlers (cooling)
- humidifiers
- dishwashers
- clothes washers
- hot tub heaters
- evaporative coolers
- hot tub pumps

Fuel Switching
Power Factor Correction
Distributed Generation
Smart Grid

https://www.eia.gov/consumption/residential/
Categories - Time of Use

- This brackets electricity prices with the costs of generation for a specific time.
- Incentivizes customers to avoid usage in peak hours.
- It also provides incentive for transitioning to smart grid technology and energy efficient investment.
- Customers can plan electricity usage.
Categories - Time of Use

- The Duck Curve allows a visualization for when time of use tariffs can be implemented in order to best save energy.
- Supports the integration of renewable sources into the grid system.

https://youtu.be/KwA44fr7apw

https://www.greentechmedia.com/articles/read/can-water-kill-the-duck-curve
Categories - Demand Response

● Aim to smoothen out any dips or peaks in load profile through automatic consumer adjustment
● This involves the financial incentivization of the customer base by the utility
● Temporary measure
● Market or Physical or both!
● Interruptibility Contract
● Direct Load Control

Categories - Spinning Reserves

- Quickest form of DSM.
- Extra power capacity that becomes available.
- Should consumer demand changes, these generators provide this capacity respond immediately to balance the power system.
DSM – Challenges
Challenges of DSM

● Lack of ICT Infrastructure
Technology (metering, control methods and communication) may be difficult to access, procure and implement

● Lack of Understanding/ Education across consumer base
Consumers must have a comprehensive understanding of the merits of DSM programs
Challenges of DSM

- Preference to traditional methods
- Additional system complexity
- Lack of incentives
- Actors and respective roles
DSM - Role of the Government

- Standards for new buildings - implemented to ensure lighting, plugs and appliances all meet Energy Efficiency (EE) standards
- Incentives for EE and other DSM measures
 - Energy taxes
 - Grants or loans
 - Rebates

- Publicity and awareness campaigns
- Funding transition of government assets to EE assets
DSM - Role of Utility

- Tariff Design
- Technology Adoption
- Data collection
A Short Break

Before we switch presenters
Evolution of DSM Technology
Evolution of DSM Technology

- **Load control** was the first DSM strategy, in the early 1950s
- In the 1960s, *electronic load control*
- A key DSM strategy has always been *innovative rates*. Employed prevalently since early 1980s
- **Energy efficient investments** is now common in most utility’s DSM portfolio. EPRI study showed reduced consumption by 11-14%
- **Demand response** was first coined in 2007 by the US Energy Independence and Security Act
Evolution of DSM Technology

● **Electrification** describes the conversion of non-electric end-uses to electricity

● E.g. electric space/water heating in lieu of natural gas or fuel heating, or electric transportation instead of gasoline/diesel based transport

● The installation of electric devices in place of fossil-fuel devices has the potential to reduce emissions of gases such as CO$_2$ by 114-320 million per year in 2030

Electrification

<table>
<thead>
<tr>
<th>Equipment type</th>
<th>Electricity demand in 20 years (GWh)(^1,2,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural pumps</td>
<td>400–600</td>
</tr>
<tr>
<td>Aircraft gate electrification</td>
<td>80–120</td>
</tr>
<tr>
<td>Airport ground support equipment</td>
<td>200–900</td>
</tr>
<tr>
<td>Cargo handling equipment (cranes, yard trucks)</td>
<td>1000–2000</td>
</tr>
<tr>
<td>Harbor craft</td>
<td>900–1700</td>
</tr>
<tr>
<td>Industrial equipment (forklifts, transportation refrigeration units, sweepers)</td>
<td>6300–27000</td>
</tr>
<tr>
<td>Lawn and garden equipment</td>
<td>2900–11000</td>
</tr>
<tr>
<td>Ship shore side power</td>
<td>4400–6600</td>
</tr>
<tr>
<td>Switching locomotives</td>
<td>400–900</td>
</tr>
<tr>
<td>Recreational equipment (all-terrain vehicles, off-road motorcycles, golf carts, specialty carts)</td>
<td>1200–2400</td>
</tr>
<tr>
<td>Total</td>
<td>18000–53000</td>
</tr>
</tbody>
</table>

\(^1,2,3\): Data sources and methods used for calculation.
Evolution of DSM Technology

- One major electrification appliance is the **electric vehicle**
- The market share of EVs could approach 30% by 2030, meaning 9 million EVs on the road at this point
- A recent study by EPRI and the Natural Resources Defense Council (NRDC) estimates that by 2050, up to 53% of vehicle miles could be EV bourne—resulting in a 48-70% reduction in emissions

https://www.epri.com/research/products/3002006881
DSM and EVs

- DSM and EVs aim to reduce emission of greenhouse gases
- New challenges implementing EV charging with DSM
- Prime opportunity for renewables to be introduced into the transport sector
- Massive reduction in air pollution, while also emerging as a source of storage for sources of renewable energy
Impact of DSM on the LDC

Bryan Hannegan, California’s Energy Future: Electricity from Renewable Energy and Fossil Fuels with Carbon Capture and Sequestration
DSM- Solutions

Enabling technologies
- Internet of things (Smart home)
- Behind-the-meter batteries
- Electric-vehicle smart charging
- Artificial intelligence and big data
- Renewable power-to-heat (residential)

Business models
- Energy-as-a-service

Market design
- Time-of-use tariffs
- Net billing schemes

System operation
- Advanced forecasting of variable renewable power generation

DSM Influence

Adjust the load forecast by accounting for the amount and the continuing momentum of the historic DSM contained in the load forecast model.
Commercially Available Applications

EnFor https://enfor.dk/services/loadfor/

DSM – Global and Regional
DSM - Worldwide

Impact on demand reduction:

- **17%** of the peak demand shifted to non-peak hours through time-of-use tariffs in Sweden.
 Electricity consumption during peak hours declined from 23% to 19% of total electricity demand in a pilot project that used price signals for demand response in Sweden; 17% of the peak demand was therefore shifted to non-peak hours (WEF, 2017).

- **5%** of total electricity sales (around 200 billion kWh) was saved during a demand-response programme in the US in 2015.
 A 1% reduction in electricity sales for a utility means on average a 0.66% reduction in peak demand for that utility (Nadel, 2017).

- **Utilities’ peak demand could be reduced by 10% on average using demand response.**
 The American Council for an Energy-Efficient Economy (ACEEE) has estimated that demand-response programmes can be used to reduce peak demand by 10% or more (Nadel, 2017).

- **A Google data centre using artificial intelligence experienced a 40% reduction in demand used in cooling.**
 Google's DeepMind AI reduced the energy used for cooling at one of the company's data centres by 40% (a 15% overall reduction in power usage), using only historical data collected from censors and applying a machine-learning algorithm to predict the future temperature and pressure of the data centre and to optimise efficiency (Evans and Gao, 2016).

IRENA 2019: Innovation Landscape for a Renewable-Power Future
https://www.irena.org-/media/Files/IRENA/Agency/Publication/2019/Feb/IRENA_Innovation_Landscape_2019_report.pdf
DSM - Worldwide

Impact on energy costs for consumers:

- **15% savings on utility bill with time-of-use tariffs for 350 households.**
 Con Edison’s Community Power pilot project would give 350 New York City Housing Authority households access to solar energy for a discounted price. The consumers managed to save 15% on their electricity bills, or around USD 80 (Con Edison, 2018).

- **Up to 40% savings on utility bill using artificial intelligence for demand management.**
 BeeBryte, a France- and Singapore-based “software-as-a-service” (SaaS) company, provides cloud-based intelligence software that can monitor real-time load in large commercial and industrial facilities. Using artificial intelligence for weather forecast, occupancy, usage and energy price signals, the software can automatically switch loads such as HVAC systems to battery storage based on time-of-use charges and delivers up to 40% savings in utility bills (BeeBryte, n.d.).

IRENA 2019: Innovation Landscape for a Renewable-Power Future

DSM in the Caribbean

- DSM must be introduced systematically and strategically.
- **Financial incentivization** is the key motivator.
- **Education** is critical in order to stimulate changes in *behaviours* towards energy conservation, and power generation’s role in *climate change*.
- Energy Efficient Investment is the *most applicable form of DSM* for the Caribbean region.
- Combining this with **financial incentivization** leads to optimal implementation of DSM schemes.
DSM in the Caribbean

Energy Report Cards
https://www.ccreee.org/all-publications/
https://www.energy.gov/eere/island-energy-snapshots

- Population and Economy
- Electricity Sector Overview
- Renewable Energy Status
- Existing Policy
- Regulatory Framework
- Targets
- Energy Efficiency

- Energy Sector Summary
- Energy Sector Performance
- Projects
- Transportation
- Training
- Workforce
- Climate Change
Rooftop PV Cells:

- Barbados has seen a significant increase in solar PV capacity since 2001.
- In 2001, the capacity of solar PV was 37kW. In 2013 the capacity was 1700kW due to the Renewable Energy Rider program.
- As of June 2020 30MW of solar energy generation (ETI-Energy).
- Incentivized customers to generate power via renewable energy sources by crediting their accounts.

[Image of Renewable Energy Status chart]

As of 2019, Barbados has over 400 electric vehicles
This is the highest EV count per capita in the region
Numerous stations available for public charging
A new fleet of 33 electric buses in 2020

https://www.megapower365.com/ev-barbados
DSM | Barbados | Solar Water Heating (SWH)

- > 50,000 SWH installations. Estimated to save 100,000 MWh of energy annually

Barbados Light and Power (BLP) offers a time of use tariff, reducing the cost of energy from $0.2190/kWh to $0.0620/kWh from peak to off-peak hours.

Barbados also offers both net metering and net billing services for residential solar installations. There is a distinction to be made:

- Net metering involves the earning of credits for PV generation added to the grid.
- Net billing is a system where customers have their bill netted for the quantity of electricity generated versus the quantity used.

Barbados offers feed-in tariffs, where small-scale renewable producers are granted above-market prices for their contribution to the grid.

In 2016 $30 million to promote electricity conservation by reducing electricity consumption, improving traffic flows in congested road corridors in the Kingston Metropolitan area

In 2018 $765 million for improvements in the energy efficiency and energy conservation initiatives

Aims to invest US$7.3B into its electricity sector by 2037. 20 year plan using more RE - 320MW of solar and wind power, 120MW of LNG, 74MW of hydro, waste to energy and/or biomass by 2025.
DSM | Jamaica | Time of Use Tariffs

<table>
<thead>
<tr>
<th>Period</th>
<th>Day</th>
<th>Time</th>
<th>Rate ($/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Peak</td>
<td>Mon-Fri</td>
<td>6pm-10pm</td>
<td>15.76</td>
</tr>
<tr>
<td>Partial-Peak</td>
<td>Mon-Fri</td>
<td>6am-6pm; 6pm-10pm for weekends and public holidays</td>
<td>13.79</td>
</tr>
<tr>
<td>Off-Peak</td>
<td>Mon-Fri</td>
<td>10pm-6am; all hours except 6pm-10pm for weekends and public holidays</td>
<td>9.85</td>
</tr>
</tbody>
</table>

https://www.jpsco.com/2020-2021-rate-schedules/
The JPSCo has also introduced Net Billing to allow personal RE (wind and solar PV) generators installed at the home to produce energy at home and gain the ability to avoid billing/sell excess energy back to the grid.

Jamaica has installed 20MW of solar capacity, 99MW of wind power, and 30MW of hydroelectric power as of 2020 (ETI).
DSM | Trinidad and Tobago

- Since 2017 25% rebate when their regular electricity bill is $300 TTD or lower <1000 kWh bimonthly.
- 100% tax credit on the cost of solar water heating as of January 2020
- 2020 LED Bulb program for residential customers
Various lighting and solar PV projects.
The Guyana National Bureau of Standards (GNBS) is working closely with CARICOM’s Regional Organisation for Standards and Quality (CROSQ) to develop standards for energy performance (minimum) for refrigerators, air conditioners and lighting.
Energy rating labelling of appliances.
VAT and import duty exemptions.
While St Lucia is nearly completely reliant on fossil fuels for generation, a clean energy policy that has stemmed from the 1990s has allowed some degree of demand side management throughout the island.

- Net metering and billing is offered by LUCELEC, the country’s utility.
- Tax credit, reductions and exemptions have been offered on renewable energy assets such as solar water heaters (since 2001).
Conclusions
Concluding Remarks

- Demand Side Management techniques and programs aim to reduce consumption on the customer side of the electrical utility.

- With well-documented success of these programs in countries such as the UK, USA, Canada, the Caribbean region could benefit from implementation of DSM techniques.

- Promoting energy efficient investment in appliances and equipment is the most effective and permanent technique mentioned.
Concluding Remarks

- Utilities should strive to financially incentivise consumers to carefully monitor demand patterns

- Consumers require education on the merits of energy conservation - this grassroots effort can be one of the most effective in DSM implementation
Thank You
References

References

- https://www.energy.gov/eere/articles/confronting-duck-curve-how-address-over-generation-solar-energy
- http://cubminnesota.org/energy-demand-side-management/
- www.greentechmedia.com/articles/read/can-water-kill-the-duck-curve
- https://energyusecalculator.com/electricity_cfllightbulb
- https://www.solarbarbados.com/
References

- http://www.looptt.com/content/ttec-begins-rebate-process
- https://ttec.co.tt/default/tariffs-2
- https://ttec.co.tt/default/conserve-energy-1
- https://www.loopcayman.com/content/imbert-tt-solar-project-will-be-largest-caribbean-0
References

- https://www.nrel.gov/
- https://www.energy.gov/