

ELECTRIFICATION Electric Vehicle Impact

Chandrabhan Sharma

Faculty of Engineering (UWI)

Trinidad and Tobago

EMobility 2020

GHG Emissions by Sector

EV averages 10km/kWh

2020 CARILEC EMobility Webinar

Characteristic of EVs Vehicle parked 95% of time

Integrating EV on the Grid

Level	Power (kW)	Approximate Charging Time (Empty Battery)
1	1-6	200 km (124 miles): +/- <u>20 hours</u> 400 km (249 miles): +/- <u>43 hours</u>
2	7 to 20	200 km (124 miles): +/- <u>5 hours</u> 400 km (249 miles): +/- <u>11 hours</u>
3 (DCFC)	Typically 50, occasionally 20	80% of 200 km (124 miles): +/- <u>30 min</u> 80% of 400 km (249 miles): +/- <u>1</u> <u>hour</u>

Impacts of Uncoordinated Charging

Significantly stress the distribution system causing:

- Severe voltage fluctuations and violations.
- Degraded system efficiency and economics.
- Increasing the likelihood of blackouts due to network overloads.

Image: https://www.zdnet.com/article/a-boot-camp-for-hacking-electric-vehicles/

Balancing EV Charging and RE Penetration

Benefits of EV: Role of EV in energy transition

Policy Considerations

- Aligning with good policy practices for electric vehicles allows for a wider target population these vehicles.
- Reduce the dependency on fossil fuels use for combustion engines
- Align with NDC contributions throughout the Caribbean
- Modification of the transport sector is the simplest way to start promoting a greener environment

Renewable energy integration challenges Managing power output fluctuations

9

https://www.nissan-

global.com/EN/TECHNOLOGY/OVERVIEW/vehicle_to_home.html#:~:text=Household%20powe r%20can%20be%20supplied,from%20the%20household%20power%20supply.

VEHICLE-TO-GRID

EV and IOT

Developed Prototype

Dynamic Coordination of EV Charging

- Since the time for EV charging can be remotely controlled by the utility then it would be best to spread the charging windows.
- This relaxes the requirement for increased power output from committed generating or committing additional units.
- The utility can incentivize their customers that are EV owners to provide wide window durations where and when possible to yield greater flexibility.

Electric Vehicle Research and Development Platform (EVRDP)

- Develop an operational Light Electric Vehicle
- Plug and play
- Switch & Replace/Upgradable
 - Dashboard
 - Motor Control
 - On Board Computer
 - Power Management
 - Sensors
- Basis of a teaching and research Platform

Thank You

Professor Chandrabhan Sharma

Department of Electrical and Computer Engineering The University of the West Indies St Augustine Campus <u>Chandrabhan.Sharma@sta.uwi.edu</u>